GEG | Geo Environmental Group Geotechnical, Environmental & Ecological Consultants

GEG House, 17 Graham Road, Malvern, WR14 2HR Tel. 01684 212526 Fax 01684 576917 www.g-eg.co.uk

PHASE I REVIEW & PHASE II STRATEGIC GEO-ENVIRONMENTAL ASSESSMENT

LAND SOUTH AND EAST OF ADASTRAL PARK **MARTLESHAM HEATH IPSWICH SUFFOLK** IP10 oBL

JANUARY 2017 (Revo1)

Prepared for:

COMMERCIAL ESTATES GROUP

CARLYLE LAND LTD

REPORT TITLE: PHASE I REVIEW &

PHASE II STRATEGIC GEO-ENVIRONMENTAL

ASSESSMENT

Site Address: Land south and east of Adastral Park

Ipswich Road Martlesham Heath

Ipswich IP10 oBL

Performed By: On Behalf Of:

Geo Environmental Group Commercial Estates Group/Carlyle Land Ltd

GEG House c/o Brookbanks Consulting Ltd

17 Graham Road6150 Knights CourtMalvernSolihull ParkwayWR14 2HRBirmingham

B37 7WY

Written by:

Florence Trahair BSc(Hons) FGS

Geo-Environmental Consultant

Checked by:

Mark Rawlings

BSc(Hons) MSc FGS CGeol

Associate Director

Approved by:

Anthony Marriott

BSc(Hons) MRSC MIEnvSc FGS

Managing Director

Project Reference: GEG-16-458

Report Reference: GEG-16-458/PIIrevo1

Issue Status: FINAL revo1

Date: 24th January 2017

TA	BLE	OF CONTENTS	PAGE
1.	INT	RODUCTION	1
	1.1	General	
	1.2	Available Information	1
	1.3	Proposed Site Development	2
	1.4	Scope	2
2.	SITI	E SETTING	Q
	2.1	Site Location	_
	2.1	Site Description	•
	2.2	2.2.1 Area 1	
		2.2.1 Area 1	
	2.3	Adjacent Land Uses	
	2.3	2.3.1 Area 1	
		2.3.2 Area 2	
		.0.	
3∙		/IEW OF AVAILABLE DESK STUDY INFORMATION	,
	3.1	Landfills	•
	3.2	Radon	
	3.3	Pollution Controls	
	3.4	Pollution Incidents	
	3.5	Hazardous Substances	
	3.6	Fuel Stations	
	3.7	Ordnance	
	3.8	Conservation	
	3.9	Site History (Areas 1 & 2)	
	3.10	Historical Uses of Adjacent Land (Areas 1 & 2)	9
4.	GEO	DLOGY, HYDROLOGY, HYDROGEOLOGY	7
_		4.1.1 Published Geology	
		4.1.2 BGS Boreholes	
		4.1.3 WSP Boreholes	
		4.1.4 Potential Geo-Hazards	11
	4.2	Hydrogeology	
	•	4.2.1 Groundwater Designation	11
		4.2.2 Groundwater Abstractions	
		4.2.3 Groundwater Source Protection Zone	11
	4.3	Hydrology	11
		3.5.1 Nearest Watercourse	11
		4.3.1 Surface Watercourse Abstractions	12
		4.3.2 Flooding	
5.	ENV	/IRONMENTAL RISK ASSESSMENT METHODOLOGY	12
•	5.1	Regulatory Controls	12
	5.2	Environmental Protection Act - Part 2A	
	5.3	Planning and Development Controls	14
	5.4	Environmental Protection Act 1990 Part III – Statutory Nuisance	
	5.5	Permitted Installations	14
	5.6	Water Resources Act (WRA) 1991	
	5.7	Groundwater Regulations (GWR) 2009	
	5.8	Suitable for Use Approach	
	5.9	Assessment Methodology	
6.		ELIMINARY RISK ASSESSMENT AND OUTLINE CONCEPTUAL	
0.		Potential Contaminants of Concern	,
	6.1	6.1.1 Area 1 & 2	,
		6.1.1 Area 1 & 2	, , ,
	6.2	Preliminary Human Health Conceptual Model	
	6.3	Preliminary Controlled Waters Conceptual Model	
	6.4		
7•	INT	RUSIVE INVESTIGATION	_
	7.1	Site Works	20

		7.1.1	General	20
	7.2	Ordnar	1ce	20
	7.3	Site Wo	orks – Area 1	20
		7.3.1	General	
		7.3.2	Limitations of Intrusive Investigation	
		7.3.3	Cable Percussion Boreholes	
		7.3.4	Window Sample Holes	
		7.3.5	Trial Pits	
		7.3.6	Sampling	
		7.3.7	Gas and Groundwater Monitoring	
	7.4		orks – Area 2	
		7.4.1	General	
		7.4.2	Limitations of Intrusive Investigation	
		7.4.3	Cable Percussion Boreholes	
		7.4.4	Trial Pits	_
		7.4.5	SamplingGas and Groundwater Monitoring	23
	7.	7.4.6	hnical Laboratory Testing	
	<i>7</i> ∙5		Area 1	
		7.5.1 7.5.2	Area 2	
	7.6		eal Laboratory Testing	
	7.0	7.6.1	Area 1	
		7.6.2	Area 2	-
		7.6.3	Areas 1 & 2	
	7.7		l Conditions Encountered	
	/•/	7.7.1	Area 1	
		7.7.2	Area 2	
		7.7.3	Visual and Olfactory Evidence of Contamination	
		7.7.4	Ordnance	
8.	GEN	ERIC H	UMAN HEALTH QUANTITATIVE RISK ASSESSMENT	20
0.	8.1		c Human Health QRA	
	0.1	8.1.1	CLEA	
		8.1.2	Other Assessment Criteria	
		8.1.3	PAH Profiling	
	8.2		cal Analysis of Soil Chemical Data	31
	0.2	8.2.1	Methodology	
		8.2.2	Made Ground	
		8.2.3	Areas 1 & 2 Asbestos - Made Ground	34
		8.2.4	Areas 1 & 2 Natural Ground	
		8.2.5	Summary of Soil Contamination	
		8.2.6	Source of Identified Soil Contamination	
	8.3	Generio	c Controlled Waters Quantitative Risk Assessment	
		8.3.1	Area 1	37
		8.3.2	Area 2	37
	8.4	Ground	l Gas Risk Assessment	
		8.4.1	Area 1	
		8.4.2	Area 2	38
9.	GEO'	TECHN	ICAL CONCLUSIONS AND RECOMMENDATIONS	38
٠.	9.1		2W	-
	9.1	9.1.1	Summary of Strata Encountered	
		9.1.2	Area 1	_
		9.1.3	Area 2	
		9.1.4	Groundwater	
		9.1.5	Trial Pit Stability	
			Relative Density	
		9.1.6	Relative Deligity	
		9.1.6 9.1.7		
		9.1.6 9.1.7 9.1.8	Rock Strengths Proposed Development	41
	9.2	9.1.7 9.1.8	Rock Strengths	41 41
	9.2	9.1.7 9.1.8	Rock Strengths Proposed Development	41 41 41
	9.2	9.1.7 9.1.8 Founda	Rock Strengths Proposed Development ations Geotechnical Constraints Foundation Types	41414141
	9.2	9.1.7 9.1.8 Founda 9.2.1	Rock Strengths Proposed Development ations Geotechnical Constraints Foundation Types Anticipated Foundation Depths	4141414141
	9.2	9.1.7 9.1.8 Founda 9.2.1 9.2.2	Rock Strengths Proposed Development ations Geotechnical Constraints Foundation Types Anticipated Foundation Depths Reinforcement of Foundations	414141414243
	9.2	9.1.7 9.1.8 Founda 9.2.1 9.2.2 9.2.3	Rock Strengths Proposed Development ations Geotechnical Constraints Foundation Types Anticipated Foundation Depths	414141414243

		9.2.7 Deepening of Foundations due to Soft/Loose Strata	43
		9.2.8 Former Structures/Footings	43
		9.2.9 Inspection of Foundation Excavations	
		9.2.10 Floor Slabs	
		9.2.11 Heave Precautions	
	9.3	Chemical Attack on Buried Concrete	
	9.4	Flooding	
	9.5	Underground Plastic Services	44
	9.6	Slope Stability and Retaining Walls	
	9.7	Earthworks	
	9.8	Fault Reactivation	45
	9.9	Excavations	
	9.10	Road Pavement Design	
	9.11	Loose/Soft Spots	
10.	ENIZ	IRONMENTAL CONCLUSIONS & RECOMMENDATIONS	
10.			
	10.1	Revised Conceptual Model	
		10.1.1 Revised Human Health Conceptual Model	
		10.1.2 Revised Controlled Waters Conceptual Model	
	10.2	Ground Gases	
	10.3	Risks to Adjacent Land and Third Parties	
	10.4	Potential Geo-Environmental Liabilities	
	10.5	Waste Classification	
	10.6	Remediation	
		10.6.1 Human Health Remedial Measures	
		10.6.2 Protection of Controlled Waters	
		10.6.3 Unidentified Contamination	
		10.6.4 Budget Remedial Costings	
	10.7	Further Investigation	49
11.	REFI	ERENCES	49
12.	T TN/T	TATIONS	51

Title	Appendix
FIGURES AND PLANS	A
Site Location Plan	Figure 2 Figure 3A Figure 3B Figure 4A Figure 4B Figure 5
Revised Conceptual Model (Existing) Area 1	Figure 6B Figure 7A
PHOTOGRAPHIC RECORD	В
EXPLORATORY HOLE LOGS	C
CHEMICAL ANALYSIS RESULTS	D
PAH PROFILING ASSESSMENT	E
STATISTICAL ASSESSMENT OF CHEMICAL RESUL	TSF
CONTAMINATION ASSESSMENT TABLES	G
GEOTECHNICAL TESTING	Н
GEOTECHNICAL GRAPHS	т

EXECUTIVE SUMMARY

Current Site Status

The entire proposed development area (hereafter referred to as the 'main site') covers an area of approximately 100.59 hectares. It is located to the east of Adastral Park in Martlesham Heath at the approximate National Grid Reference 625788E, 244800N.

The site covers a large area of land between Adastral Park to the north and west, and Ipswich Road to the south. The site comprises an active quarry (Brett Aggregates) with associated areas of historical landfill currently used as agricultural fields or set aside land with the Brett Aggregates site offices, cement works, warehouse and aggregate stock piles in the centre of the site. Topographically, the site falls broadly from the north to the south at a fairly gentle angle, but natural levels have been disturbed by quarrying and landfill activity. A relatively steep slope makes up the gap between Area 1 and Area 2, and the active quarry areas in the centre of the main site are significantly lower than the landfill areas in the north and south.

Geology, Hydrogeology, Hydrology & Landfills The solid geology directly beneath the majority of the site comprises the Red Crag Formation (a Principal Aquifer) of the Pliocene epoch. The Thames Clay Formation of the Eocene epoch is indicated as underlying the Red Crag Formation at depth.

The solid geology is indicated to be overlain by Superficial Deposits (a Secondary A Aquifer) comprising the Kesgrave Catchment Subgroup (formerly the Kesgrave Formation) of the Pleistocene epoch. This is shown to be absent across much of the central, eastern and western sections of the site, presumably removed by quarrying.

The nearest surface water feature, approximately 500m north west, is an unnamed tributary stream which flows into the River Deben. There is a fishing pond located within the main site, approximately 15m south west of Area 1 and 55m south east from Area 2. There are 4 No. manmade lakes in the north east edge of Area 1, which are associated with the quarry.

There is 1 No. active landfill on site operated by Brett Aggregates Ltd which broadly coincides with Area 1. There is 1 No. historical landfill on site which includes the part of the north west of Area 1 and south west of Area 2, operated by Wilding and Smith Ltd.

Flooding

According to the Environment Agency, the site is not located within a Flood Zone 2 or 3.

Site History

The history of the site has been traced back to 1884 when it comprised rough grassland and heath. No significant changes are indicated until 1957 when much of the central section of the site was shown as an unnamed Sand Pit. A Sewage Works was shown from 1965 to 1986 along the northern boundary of the south western section of the site, approximately 750m south west of Area 2. According to the Environment Agency, from 1996 to 1980 much of the central and

southern section of the site became a landfill known as The Swale. Historical map data from 1996 to present shows ponds along the north boundary of Area 1 (former sand pits), and from 2000 to present shows the site as an active quarry and landfill, which according to the Environment Agency is still active and is known as the Waldringfield Quarry.

Diesel tanks for refuelling were noted on site in the western section of Area 1, behind the large building. 2 No. petrol ASTs were also shown directly to the south of Area 1, however, these were not evident on site. Both sets of tanks were identified on a drawing in the previous Phase I report undertaken by Environ in 2007, and highlighted by the recent Brookbanks Phase I.

Intrusive Investigations

Area 1 (main quarry area in the central and eastern sections of the site) of the intrusive investigation was undertaken on 21st to 23rd September 2016 and comprised trial pitting, window sample boreholes, and cable percussive boreholes.

Area 2 of the intrusive investigation was carried out on 17th and 18th October 2016 and included trial pits and cable percussive boreholes in the Uncontrolled Landfill Area to the west of the main quarry site.

According to the Unexploded Ordnance (UXO) report provided by the client (due to the proximity to a historical airfield) the risk of finding unexploded ordnance is considered moderate. However, due to the fact that much of the site has since been disturbed by quarrying and landfilled, it is considered that any ordnance is likely to have already been removed or dealt with. As such, supervision by a UXO trained engineer was deemed unnecessary for the intrusive investigation.

Ground Conditions Area 1

Made Ground was encountered across the majority of the site. In the north west area of the site the Made Ground was encountered to depths of up to 0.05 to 2.40m in 6 No. locations and typically consisted of clayey gravelly medium SAND with occasional flint and sandstone gravel and cobbles.

The Made Ground in the central and southern sections of the site was significantly deeper (to depths of up to 5.70-12.60m), and typically comprised loose to medium dense medium silty gravelly SAND, or as very sandy gravelly silt CLAY, with occasional to numerous gravel to cobble-sized fragments of concrete, brick, tarmacadam and with occasional cobble-sized pockets of clay and of silt. Gravel is of subrounded flint. With occasional ash fragments in 8 No. locations; a slight peaty odour in 5 No. locations; and cobble-sized timber fragments in 5 No. locations.

The Kesgrave Catchment Subgroup was encountered underlying the Made Ground in 4 No. of the exploratory holes. It generally comprised loose to medium dense slightly gravelly medium SAND. Gravel is of sub angular flint, quartzite and occasionally sandstone.

The Red Crag Formation was encountered underlying the Made Ground in 11 No. locations; and underlying the Kesgrave Catchment Subgroup in 2 No. locations. It generally comprised medium dense to very dense SAND with occasional whole shells.

The Thames Clay Formation was encountered under the Made Ground in 2 No. locations as weak MUDSTONE, and as stiff brown silty CLAY.

Area 2

Made Ground was encountered across the site.

It generally comprised loose to medium dense fine to medium SAND over medium dense to very dense clayey gravelly medium to coarse SAND with occasional to numerous gravel-sized to boulder-sized fragments of concrete and brick; with rare to occasional gravel to cobble-sized fragments of tarmacadam rope, plastic and fabric. And with occasional metal fragments in 5 No. locations, and cobble to boulder-sized timber fragments in 6 No. locations. Gravel is of subrounded flint and quartzite. Numerous cobble-sized peaty pockets were encountered in TP20, and a slight peaty odour was encountered in 2 No. locations.

The Kesgrave Catchment Subgroup was not encountered during the investigation.

The Red Crag Formation was encountered underlying the Made Ground in 4 No. locations. It generally comprised medium dense to very dense SAND with numerous shell fragments and occasional whole shells, over extremely weak SANDSTONE in 3 No. locations.

Groundwater

Groundwater was encountered in 4 No. trial pits during the intrusive investigation from 0.50m to 4.50m as damp to wet ground.

Groundwater was encountered in the installed boreholes during subsequent monitoring visits in 8 No. of the 12 No. cable percussion boreholes locations from 3.00m to 11.80m, and in 1 No. of the 8 No. window sample locations at 4.10m.

Proposed Development

The masterplan phasing overlay of the entire development site comprises 4 No. proposed residential areas (R1 to R4) covering a total of 53.63 ha and 5 No. surrounding proposed open space areas (OS1 to OS5) covering a total of 46.96 ha. The present report covers parts of OS1, OS2 and R2 (Area 1), and an unnamed parcel of land adjacent to western boundary of OS1 (Area 2).

Geotechnical Conclusions & Recommendations

Shallow/Trench Fill Foundations

Based on the information to date, current site levels and subject to the final layout, shallow/trench fill foundations are likely to be suitable only

for the north western part of Area 1 where the Made Ground was significantly shallower than the rest of the site (0.05m to 2.40m). Area 2 is proposed for POS therefore no structures are envisaged here.

It is recommended that foundation loads are transferred onto the medium dense granular soils of the Kesgrave Catchment Group or Red Crag Formation, utilising traditional strip/trench foundations.

An allowable bearing pressure of 100 kN/m^2 is recommended based on total settlements of less than 25 mm for 0.60 m wide foundations for this stratum.

Further investigation of localised loosening of the natural strata is recommended (e.g. in the area WSo₄) to confirm suitability of shallow foundations and bearing capacity in this area.

Alternative Foundations

The Made Ground is not considered suitable bearing strata due to its inherent variability which may result in unacceptable differential settlements.

Consequently, consideration is given below to the following potential foundation solutions:

- 1. Raft foundations
- 2. Vibro stone columns
- 3. Piled foundations

Raft foundations are not considered suitable at this stage for the site based on the significant variability in the Made Ground and presence of biodegradable materials including timber and metal fragments, the proportions of which are significant in selected locations. Further delineation of the Made Ground may however, be beneficial.

Vibro stone columns are similarly considered potentially unsuitable for the site based on the significant variability in the Made Ground and presence of biodegradable materials together with soft layers which could affect the integrity of the columns.

Consequently, it is recommended that foundation loads are transferred onto the medium dense to very dense granular or extremely weak to weak sandstone of the weathered Red Crag Formation utilising piled foundations.

The piled foundations are likely to be required to extend into the competent strata (very weak SANDSTONE) at around 9.00m to 15.45m.

Driven piles are likely to be the most economic pile type, however, it is recommended that a specialist piling contractor is contacted to design and warrant a suitable system. Given the risk to the underlying Aquifers, the Environment Agency may require CFA piles to reduce the

potential creation of a preferable migration pathway for residual contaminants.

Other information

Suspended floor slabs are envisaged for the majority of Area 1.

For both Areas 1 and 2, ACEC Class AC-1s (Design Class DS-1) conditions are indicated to typically prevail in the near surface soils on the most of the site.

Slope stability associated with exposed and buried high walls is likely to be a localised issue related to the edges of the existing and historical quarrying. On the site and will require addressing as part of a more detailed investigation

At this stage, prior to in situ CBR testing, a CBR design value of 20% is recommended locally for the natural granular soils and <2% for geotechnically suitable Made Ground.

Environmental Risk Assessment & Liabilities

Risks to Site Users

<u>Identified Sources</u>: 'Hotspots' / localised exceedances of mercury, lead, coal tar PAHs and potential widespread coal tar PAHs in Area 1 in the Made Ground. 1 No. benzo(a)pyrene concentration in Area 1 was in the vicinity of quarry vehicle parking and a fuel tank which likely represents its source.

'Hotspots' / localised exceedances of arsenic and coal tar PAHs in the Made Ground of Area 2.

<u>Potential Risks</u>: End users of the site and construction/maintenance workers are potentially at significant risk from the sources identified above and further testing and assessment is required. The PAHs represent a potential risk via the inhalation pathway.

Risks to Controlled Waters

<u>Potential Sources</u>: Elevated TPHs, total PAHs and benzo(a)pyrene in the groundwater in Area 2.

Localised lead, mercury and coal tar PAHs in the soils of Area 1. Potential widespread coal tar PAHs in Area 1.

Localised arsenic and car tar PAHs in the soils of Area 2.

<u>Potential Risks</u>: Risks to the underlying Principal Aquifer are considered potentially significant particularly based on the levels of TPHs and PAHs recorded in the groundwater in Area 2. Further assessment is recommended below.

Ground Gases

Radon protective measures are not required.

Due to the fact that the much of the site (a significant part of Area 1 and the whole of Area 2) lies either on or directly adjacent to a historical landfill and there are significant depths of Made Ground, it is considered that Area 1 should be categorised as 'Amber 2' in accordance with the NHBC traffic light system detailed in CIRIA C665, and as such special gas protection measures are deemed necessary.

In addition, further monitoring and possible venting of Area 2 is recommended to reduce risks to the proposed development and off site receptors.

VOC membranes will be required in Area 1 where elevated PAHs remain beneath buildings.

Remediation

Human Health Remedial Measures

Based on the information available the following remedial measures are anticipated to protect human health:

- Delineation and capping of the identified areas of contamination. (In view of the history of the site this may comprise the majority of both areas subject to the proposed end use of Area 2).
- Where capping is required, front gardens and landscape areas will require 300mm of capping, whilst rear gardens will require 600mm, subject to approval of the Local Authority and NHBC.
- The thickness and source of any capping materials should be independently verified by GEG. Site won material outside the identified areas of contamination could be used.
- Removal of any contaminated soils to facilitate placement of the capping layer should also be independently verified by GEG to ensure regulatory approval.
- VOC membranes where elevated PAHs remain beneath buildings.

Protection of Controlled Waters

Subject to further investigation and DQRA if required, based on the information available the following localised remedial measures are potentially required to controlled waters:

- Removal of any gross soil hydrocarbon contamination in the area of the tanks etc.
- Treatment of the localised TPH and PAH groundwater contamination utilising Enhanced Natural Attenuation including for example oxygen release compounds (ORC) and subsequent monitoring. Chemical oxidation is not considered suitable at this stage due to the levels of potentially explosive gases present.

However, liaison with a specialist contractor is advised.

- Backfilling of excavations with approved inert verified material.
- Validation Reporting.

Further Investigation Requirements

The following further work is recommended:

- Further detailed investigation is required around the quarry buildings and in particular in the vicinity of the assumed fuel tanks to determine whether any soil and groundwater hydrocarbon contamination and asbestos are present.
- Delineation of the identified 'hotspots' across both areas and further investigation of potential widespread coal tar PAHs in Area
 1.
- Further gas and groundwater monitoring in Area 1 and Area 2.
- Detailed Quantitative Risk Assessment (DQRA) for groundwater (if required following the above).

This executive summary is intended to provide an outline of the site assessment in relation to ground contamination and geotechnical parameters. It does not provide a definitive analysis of the information obtained.

1. INTRODUCTION

1.1 General

Geo Environmental Group (GEG) were commissioned by Brookbanks Consulting Limited (Brookbanks) on behalf of Commercial Estates Group (CEG) and Carlyle Land Ltd (Carlyle Land) (the Clients) to undertake a Phase I Review & Phase II Strategic Geo-Environmental Assessment of a site known as 'Land south and east of Adastral Park' in order to provide relevant information with respect to the proposed development of the site.

The report has been staged to encompass two areas of investigation referred to as 'Area 1' and 'Area 2'. (These are sections of a much larger development area which in total cover approximately 101 hectares). Area 1 comprises the larger of the two sites and includes the Brett Aggregate quarry as well as an historical associated landfill. Area 2 lies directly to the north west of Area 1 and covers a large part of an uncontrolled historical landfill.

The purpose of this report was to determine:

- Potential environmental risks and liabilities associated with any potential soil and shallow groundwater contamination in accordance with current UK guidance (CLR 11) for a future residential end use.
- Geotechnical requirements for foundations, buried concrete, excavations, earthworks and slope stability with respect to the proposed residential development of the site.

A Preliminary Earthworks Specification was previously undertaken by GEG on behalf of the client (Ref. GEG-16-458_EW_Spec, dated 18th July 2016).

1.2 Available Information

The following information was supplied by Brookbanks:

- 'Masterplan Phasing Overlay,' Brookbanks.
- 'Illustrative Framework Masterplan', BroadwayMalyan, Drawing Ref. 31677 01, dated 3rd March 2017.
- 'Geo-Environmental Phase I Desk Study', Brookbanks, Ref. 10391/DS/01 DRAFT, dated 9th December 2016.
- 'Earthworks Strategy Report,' WSP (on behalf of BT Telereal), Ref. 12220424 Revo1, dated September 2009.
- 'Environmental Statement,' ENVIRON UK Ltd, dated April 2009.
- 'Phase 1 Environmental Assessment of Undeveloped Land, Martlesham Heath,' ENVIRON UK Ltd, Ref. 64-C12305, dated 21st September 2007.
- 'Preliminary Unexploded Ordnance (UXO) Risk Assessment of Advanced Communications Technology Centre, Adastral Park,' Landmark, Ref. P5507, dated 20th February 2016.

• Various historical maps and map data.

GEG also purchased various utility company service drawings of the site.

1.3 Proposed Site Development

The current proposed development of the site comprises up to 2000 homes, an employment area of co.6ha (use class B1), a secondary local centre (comprising use classes A1, A3, A5 and D2), a school, green infrastructure (including Suitable Accessible Natural Greenspace (SANGs), outdoor play areas, sports ground and allotments/ community orchards, public footpaths and cycleways, vehicle access, and associated infrastructure.

1.4 Scope

The works performed by GEG included:

- A Phase I Review of available information.
- A staged Phase II intrusive investigation undertaken as follows:
 - i. Area 1 comprising machine-excavated trial pits, cable percussive boreholes and window sample boreholes across the central section of the site:
 - ii. Area 2 comprising additional machine-excavated trial pits, and additional cable percussive boreholes in the area of the uncontrolled landfill in the western section of the site.
- Chemical analysis and geotechnical testing of selected soil samples.
- Chemical testing of groundwater samples (in Area 2 only).
- Gas and groundwater monitoring.
- Development of the conceptual model and generic quantitative human health and qualitative Controlled Waters environmental risk assessments in accordance with CLR11.
- A qualitative/quantitative ground gas risk assessment in accordance with NHBC and CIRIA guidance.
- A geotechnical assessment (including foundations, floor slabs, buried concrete, road pavement design etc.) and including recommendations for suitability of the site for soakaway drainage.
- Recommendations for further investigation and/or remedial work (if required).
- Provision of a report documenting the above.

Limitations to the scope of the report are outlined in Section 12.

2. SITE SETTING

2.1 Site Location

The entire proposed development area (hereafter referred to as the 'main site') covers an area of approximately 100.59 hectares. It is located to the east of Adastral Park in Martlesham Heath at the approximate National Grid Reference 625788E, 244800N.

Area 1 is approximately 18.2 hectares and is located in the centre of the main site at the approximate National Grid Reference 625863E, 244792N.

Area 2 is approximately 3.01 hectares and is located in the west of the main site at the approximate National Grid Reference 625593E, 245024N.

A section of the 1:25,000 Ordnance Survey (OS) map identifying the site location is shown in Figure 1 of Appendix A. The site layout plan is presented in Figure 2 (Appendix A) and a photographic record is provided in Appendix B.

2.2 Site Description

The site covers a large area of land between Adastral Park to the north and west, and Ipswich Road to the south. The site comprises an active quarry (Brett Aggregates) with associated areas of historical landfill currently used as agricultural fields or set aside land with the Brett Aggregates site offices, cement works, warehouse and aggregate stock piles in the centre of the site. Topographically, the site falls broadly from the north to the south at a fairly gentle angle, but natural levels have been disturbed by quarrying and landfill activity. A relatively steep slope makes up the gap between Area 1 and Area 2, and the active quarry areas in the centre of the main site are significantly lower than the landfill areas in the north and south.

With reference to Figure 2, the following physical characteristics of the site for Area 1 and Area 2 have been obtained from the site walkover which was undertaken on the 21st September 2016.

2.2.1 Area 1

Access

Area 1 was accessed via Ipswich Road to the south east, via Brett Aggregates.

Current site status and boundaries

The majority of the central and southern sections of Area 1 are an active quarry run by 'Brett Aggregates' with aggregate washing facilities and machinery parking; a series of fishing lakes lie in the western central section; the land to the east and west of the main quarry area are agricultural set-a-side land over landfill, and the land to the north comprises the BT testing strip, (for telecom and communication research) associated with Adastral Park, and scrub-covered landfill. Three large lakes/silt pits are located in the eastern section of the site, and are associated with the quarry works.

Ground levels / slopes on or close to the site

Area 1's levels undulate naturally from north to south, but much of the natural topography has been disturbed by quarrying activities. The central section, the fishing lakes and the two sections currently being quarried, represent the lowest site levels, with the topography gently increasing to the south west, and more steeply to the north east. The ground levels of the quarry in the centre and north of the site are lower than the landfill in the south.

Depressions in the ground surface

None observed.

Waterlogged or marshy ground None observed.

Surface water

The lakes in the eastern section and the fishing lakes in the western central section.

Trees or hedges

Trees and hedges bound the fields around the edges of the site, with a few sporadic trees around the fishing lakes.

Existing buildings on site

In the centre of Area 1 there were two single storey temporary buildings associated with the quarry: the site office and the office for the cement works. There was also a large single storey building to the west of the site office.

There was an aggregate washing plant to the north east of the site office, and a concrete mixing plant to the east of the site office.

Basements on site

None observed.

External hardstanding

Various across the active quarry site associated with vehicle parking and internal road systems.

Made Ground, earthworks or quarrying The central section of Area 1 was an active quarry, two sections to the north and the south east were still being actively worked at the time of the site works. Much of the rest of the site comprised historical landfill (presumably associated with infilling of former areas of the quarry). Significant depths of Made Ground are anticipated

Overhead / buried Services present

Buried electricity and BT cables associated with the site offices and the BT testing facility in the north.

The following environmental observations regarding the site were made during the site walkover:

Tank storage and dispensing facilities

Diesel tanks for refuelling were present in the western section of Area 1, behind the large building.

Potentially hazardous materials

None observed.

Asbestoscontaining materials

The quarry office buildings may potentially contain asbestos, with a full asbestos survey is recommended prior to development.

Waste storage

None observed.

Electricity substations

None observed.

2.2.2 Area 2

Access Area 2 was accessed from Ipswich Road to the south

> east via a farm/BT access track. The site could also be accessed through Brett Aggregates via a haulage road.

Current site status and boundaries

Area 2 was part of a larger agricultural field with bramble overgrowth and hedge boundaries to the north, east and west, with no physical boundary to the south. It has been designated as an Uncontrolled Landfill as records of disposed material are limited.

Ground levels / slopes on or close to the site

The site levels sloped gently from north to south. However, it should be noted that much of the natural topography has been disturbed by quarrying activities.

Depressions in the ground surface

None observed.

Waterlogged or marshy ground

None observed.

Surface water

The fishing lake was directly southwest of the site.

Trees or hedges

Deciduous semi mature trees and hedges bound the fields around the edges of the site, with a few sporadic

trees around the fishing lake.

Existing buildings

on site

None observed.

Basements on site None observed.

External hardstanding None observed.

Made Ground, earthworks or quarrying Area 2 was previously used as landfill. Significant

depths of Made Ground are anticipated.

Overhead / buried Services present None observed.

The following environmental observations regarding the site were made during the site walkover:

Tank storage and

dispensing facilities

None observed.

Potentially hazardous

materials

None observed.

Asbestoscontaining materials None observed, but a full asbestos survey is

recommended prior to development.

Waste storage

None observed.

Electricity substations

None observed.

2.3 Adjacent Land Uses

2.3.1 Area 1

A summary of surrounding land-use in the immediate vicinity of Area 1 of the site including neighbouring properties is provided below.

North Commercial properties to the northwest, fields and the

BT testing strip directly north and a caravan park to the

north east.

West Area 2, Adastral Park (commercial development), the

A12, and Martlesham Heath

East Agricultural fields and Wadringfield Heath Golf Course

South Ipswich Road and agricultural fields.

2.3.2 Area 2

A summary of surrounding land-use in the immediate vicinity of Area 2 the site including neighbouring properties is provided below.

North Commercial properties to the northwest, fields directly

north and a caravan park to the north east.

West Adastral Park (commercial development), the A12, and

Martlesham Heath

East Area 1, agricultural fields and Wadringfield Heath Golf

Course

South Ipswich Road and agricultural fields.

3. REVIEW OF AVAILABLE DESK STUDY INFORMATION

Available information relating to the history and current status of the site is summarised in the following sections extracted from the Geo-Environmental Phase I Desk Study Report undertaken by Brookbanks on behalf of their client CEG. The review encompasses the entire 101 hectare site which incorporates the sections covered by this report unless otherwise stated.

3.1 Landfills

There is 1 No. active landfill on site operated by Brett Aggregates Ltd which broadly coincides with Area 1:

• Waldringfield Quarry (Brett Aggregates), Ao5 Landfill taking Non-Biodegradable Waste

There is 1 No. historical landfill on site which includes the part of the north west of Area 1 and south west of Area 2, operated by Wilding and Smith Ltd.

• The Swale (Wilding and Smith Ltd), Landfill taking inert waste, operating from December 1980 to December 1996.

There are 3 No. historical landfills within 1000m of the main site:

- Waldringfield Caravan Site, approximately 400m north east of Area 1, waste type unspecified, operating dates unspecified.
- Foxhall Road, Brightwell (Suffolk County Council), approximately 1000m south west of Area 1, Landfill taking various waste types (including inert, industrial, commercial, special waste and household), operating from September 1963 to an unspecified date.
- Foxhall Road, Brightwell (Felixstowe Urban District Council), approximately 1000m south west of Area 1, Landfill taking various waste types (including inert, industrial, commercial, special waste and household), operating from December 1994 to an unspecified date.

3.2 Radon

According to the Desk Study report, the site is in an area where between 1% and 3% of properties are above the radon action level. However, according to current guidance no radon protection measures are required.

3.3 Pollution Controls

Brett Aggregates Ltd hold an IPC permit for waste landfilling on site.

3.4 Pollution Incidents

No pollution incidents to Controlled Waters are recorded within 250m of the site.

3.5 Hazardous Substances

There are no records of List 1 or List 2 Dangerous Substances Inventory Sites within 500m of the site. No records of Control of Major Accident Hazard (COMAH) or Notification of Installations Handling Hazardous Substances (NIHHS) sites within 500m of the site.

3.6 Fuel Stations

No fuel station entries are recorded within 500m of the site.

3.7 Ordnance

According to the desk study, the site lies in an area of medium/high risk in regards to unexploded ordnance. However, the suggested mitigation measures in UXO Report will only apply to areas of previous undisturbed ground. Area 1 and Area 2 have been extensively quarried and landfilled since 1971, and as such no mitigation measures are deemed necessary.

3.8 Conservation

According to the desk study, there are no records of National Nature Reserves (NNR), Local Nature Reserves (LNR), Areas of Outstanding Natural Beauty (AONB), Special Protection Areas (SPA), Special Areas of Conservation (SAC), Ancient Woodlands, Ramsar Sites or World Heritage Sites within 500m of the site.

1 No. Site of Special Scientific Interest (SSSI) lies in the north east of the site and is known as Waldringfield Pit SSSI (Geological Interest). This falls within Area 1 and covers an area of approximately 0.19 acres.

The majority of the site lies within two Nitrate Vulnerable Zones.

3.9 Site History (Areas 1 & 2)

The dates, approximate location and description of pertinent features of the site history as identified from the desk study and historical maps are summarised as follows. Capitalised words denoting structures are taken directly from historical maps.

The history of the site has been traced back to 1884 when it comprised rough grassland and heath.

No significant changes are indicated until 1957 when much of the central section of the site was shown as an unnamed Sand Pit. A Sewage Works was shown from 1965 to 1986 along the northern boundary of the south western section of the site, approximately 750m south west of Area 2.

According to the Environment Agency, from 1996 to 1980 much of the central and southern section of the site became a landfill known as The Swale as detailed in Section 3.1.

Historical map data from 1996 to present shows ponds along the north boundary of Area 1 (former sand pits), and from 2000 to present shows the site as an active quarry and landfill, which according to the Environment Agency is still active and is known as the Waldringfield Quarry as detailed in Section 3.1.

An oil AST and petrol UST is shown in the west of Area 1 (around the existing quarry buildings), and on the 1986 map a Tank is shown in the centre of the site, in Area 1.

3.10 Historical Uses of Adjacent Land (Areas 1 & 2)

The dates, approximate location and description of pertinent features of the site's surroundings as identified from the historical maps are summarised as followed. Please note, capitalised words denoting structures are taken directly from historical maps.

The history of the site surroundings has been traced back to 1884 when it comprised rough grassland and heath with the Swale Plantation adjacent to the north east. Tumuli were also shown on land to the west.

No significant changes are indicated until 1917 when the land approximately 500m northwest of the main site had a military presence, including an air strip (the nearest point of which is approximately 200m from Area 2). The strip and surrounding area were bombed in 1941. The airfield was closed in 1963.

From 1957 a number of small buildings are shown approximately 1000m south west of Area 1, which by 1965 was labelled as Sheep-Drift Farm. By 1971 the north and west of the site was shown as developed, with Tennis Courts, a Sports Field and Works.

From 1979 Adastral Park to the west was shown with several warehouses, BT Research Laboratories, Post Office Research Centre, chemical storage buildings and Tanks.

Residential development expanded to the west between 1980 and 1988, until 2000-2006 when it is marked as Martlesham Heath. A Caravan Park (now the Moon & Sixpence Holiday Park) was first shown on the 1993 map to present approximately 350m to the north east of Area 1.

2 No. petrol ASTs are shown directly to the south of Area 1 on Figure 2 in the 2007 Environ report referenced by the Brookbanks Phase I, however, these were not evident on site.

4. GEOLOGY, HYDROLOGY, HYDROGEOLOGY

4.1.1 Published Geology

Reference to the British Geological Society (BGS) the 1:50,000 BGS digital mapping indicates that the solid geology directly beneath the majority of the site comprises the Red Crag Formation of the Pliocene epoch, and is described as abundantly shelly coarse grained sandstone with ferruginous concretions and a basal bed of flint cobbles. The Thames Clay Formation of the Eocene epoch is indicated as underlying the Red Crag Formation at depth, and is described as sandy silty clay/mudstone of marine origin.

The solid geology is indicated to be overlain by Superficial Deposits comprising the Kesgrave Catchment Subgroup (formerly the Kesgrave Formation) of the Pleistocene epoch that consists of sand and gravel. This is shown to be absent across much of the central, eastern and western sections of the site, presumably removed by quarrying.

No faults are conjectured to intersect the site at the surface.

4.1.2 BGS Boreholes

There is a borehole record referenced on the BGS records that related to a borehole, approximately 50m south of Area 1, at Sheep Drift, Martlesham (Ref.: TM24SE28) sunk in 1961 to a full depth of 250ft.

The geology is summarised below:

- Sand & Gravel to 3.20m
- Red Crag Formation to 11.28m
- London/Thames Clay Formation to 24.30m
- Unclassified Chalk to 76m

Another borehole record referenced on the BGS records relates to a borehole approximately 100m to the north of Area 1, (Ref.: TM24NE17) sunk in 1966 to a depth of 62ft.

The geology is summarised below:

- Sand & Gravel to 0.50m
- Red Crag Formation to 9.40m
- London/Thames Clay Formation 62m

There are no BGS Boreholes recorded in the close vicinity of Area 2.

4.1.3 WSP Boreholes

A previous intrusive investigation adjacent to the north of the site includes several boreholes, 5 No. of which are adjacent to the northern boundary of Area 1, and 2 No. are near the northern boundary of Area 2.

No further information has been provided.

4.1.4 Potential Geo-Hazards

No significant potential geo-hazards such as underground workings, natural cavities, soluble rocks, landslips, compressible deposits, running sands or swelling clays are identified in the Brookbanks Phase I Desk Study.

4.2 Hydrogeology

4.2.1 Groundwater Designation

According to the Environmental Agency the Superficial Deposits are considered a Secondary A Aquifer and the solid geology a Principal Aquifer.

Principal Aquifers are assigned where geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers.

Secondary A Aquifers are defined as permeable layers capable of supporting water supplies at a local rather than a strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

4.2.2 Groundwater Abstractions

According to the Environment Agency there are 2 No. groundwater abstraction licences within Area 1. Both are for mineral washing from an unspecified groundwater source for Brett Aggregates.

There are no groundwater abstraction licences within Area 2.

There is 1 No. groundwater abstraction licence approximately 500m north of Area 1 which is used for a Private Water Supply.

4.2.3 Groundwater Source Protection Zone

According to the Environment Agency, there are no Groundwater Source Protection Zones in the area of the site.

4.3 Hydrology

3.5.1 Nearest Watercourse

The nearest surface water feature, approximately 500m north west, is an unnamed tributary stream which flows into the River Deben.

There is a fishing pond located within the main site, approximately 15m south west of Area 1 and 55m south east from Area 2.

There are 4 No. manmade lakes in the north east edge of Area 1, which are associated with the quarry.

4.3.1 Surface Watercourse Abstractions

According to the Environment Agency there are 2 No. surface water abstraction licences over 500m of the site.

- 1 No. abstraction licence approximately 75m southwest of Area 1 and approximately 200m south of Area 2, which is used for agriculture (irrigation).
- 1 No. abstraction licence approximately 500m south of Area 1, which is used for agriculture (irrigation).

4.3.2 Flooding

According to the Environment Agency, the site is not located within a Flood Zone 2 or 3.

5. ENVIRONMENTAL RISK ASSESSMENT METHODOLOGY

5.1 Regulatory Controls

Contaminated land in England is principally controlled by:

- Part 2A of the Environmental Protection Act (1990) and accompanying Statutory Guidance.
- Planning and Development Controls.

Part 2A relates to contaminated land risks from land in its current condition, whilst the planning and development control essentially is applicable to new developments which fall within the planning regime and applies to the proposed end use of the land.

These two key pieces of legislation are discussed further in the following sections together with other potentially relevant systems.

5.2 Environmental Protection Act - Part 2A

Part 2A of the Environmental Protection Act (1990) [EPA], which was introduced by section 57 of the Environment Act 1995, requires an overall risk-based approach to dealing with contaminated sites, to ensure that they are 'suitable for use'.

DETR Circular 02/2000 'Contaminated Land' which came into force in England on 1st April 2000 provided accompanying regulations and Statutory Guidance. This was superseded by DEFRA Circular 01/2006 'Contaminated Land' which included amendments to address land contaminated by radioactivity.

Definition of Contaminated Land

Contaminated land is defined in section 78A(2) of Part 2A as:

'Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in on or under the land, that —

- Significant harm is being caused or there is a significant possibility of such harm being caused; or
- Pollution of controlled waters is being, or is likely to be caused.'

The Water Act 2003 s86 modified the definition of contaminated land to:

Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in on or under the land, that —

- Significant harm is being caused or there is a significant possibility of such harm being caused; or
- Significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused.'

Recent changes to Part 2A require the local authority to use a four category system in order to decide whether or not land is designated as contaminated land.

Category 1 describes land which is clearly problematic e.g. because similar sites are known to have caused a significant problem in the past.

Categories 2 and 3 cover the less straightforward land where detailed consideration is needed before deciding whether it is contaminated land. The test rests on whether or not the Local Authority believes there is a strong case for regulatory action – and thus whether it should be placed into Category 2 (contaminated land) or Category 3 (not contaminated land). The decision basis is initially related to human health risks, and if this is not conclusive due to uncertainty over risks, wider socio-economic factors (e.g. cost, views of local people etc.).

Category 4 describes land that is clearly not contaminated land. The new Category 4 test is particularly important in terms of reducing uncertainty over when land is clearly not contaminated land in the legal sense. Land at or below SGV/GAC levels derived using the CLEA methodology is likely to be well within Category 4. DEFRA are currently in the process of producing Category 4 screening levels. PT2A states that normal levels of contaminants in soil should not be considered to cause land to qualify as contaminated land, unless there is a particular reason to consider otherwise. DEFRA have commissioned BGS to produce a report determining normal levels of contaminants in UK soils.

Once land has been determined as contaminated land, the enforcing authority must consider how it should be remediated and, where appropriate, it must issue a remediation notice to require such remediation. The enforcing authority for the purposes of remediation may be the local authority which determined the land, or the Environment Agency, which takes on responsibility once land has been determined if the land is deemed to be a "special site". The rules on what land is to

be regarded as special sites, and various rules on the issuing of remediation notices, are set out in the Contaminated Land (England) Regulations 2006.

'Special Sites'

In certain cases, the Environment Agency is the regulatory authority for the contaminated land legislation. This arises if the site under investigation has been used for certain processes, or if the site is situated on bedrock classed as a Principal Aquifer (i.e. water-bearing strata). In the legislation, these sites are referred to as "Special Sites".

5.3 Planning and Development Controls

The Part 2A contaminated land regime will not normally apply where land is being managed within the normal cycle of land redevelopment and regeneration, where planning and development control will continue to be the primary means of control.

Land contamination, or the possibility of it, is a material consideration for the purposes of town and country planning. Current planning control on contaminated land is set out in **National Planning Policy Framework (England)**, which replaced PPS23 in March 2012.

National Planning Policy Framework (England) is intended to complement the pollution control framework under the Pollution Prevention and Control Act 1999 and the PPC Regulations 2000.

In addition to the planning system, the **Building Regulations 1991** (made under the Building Act 1984) may require measures to be taken to protect the fabric of new buildings, and their future occupants, from the effects of contamination. Approved Document Part C (Site Preparation and Resistance to Contaminates and Moisture) 2004 edition gives guidance on these requirements.

5.4 Environmental Protection Act 1990 Part III – Statutory Nuisance

Statutory nuisance provisions will no longer apply where the nuisance arises in relation to land in a 'contaminated state'. However, nuisance provisions could still apply where land gives rise to a nuisance (such as an odour) that is an offence to human senses but which is not covered under the various categories of harm set out in the Contaminated Land Statutory Guidance.

5.5 Permitted Installations

Part 2A will not apply where the Environment Agency or the Local Authority has powers under Integrated Pollution Prevention and Control (IPPC) provisions of the Environmental Permitting Regulations 2007 to take action to remedy contamination resulting from the breach of an installation permit.

Waste Management Licensing (Part II of EPA 1990)

Part 2A will not normally apply where contamination has resulted from land subject to a waste management licence, although it may apply where adverse effects arise from causes other than a breach of licence conditions or from activities

that are permitted under the licence. Licences are regulated and issued by the Environment Agency.

Waste management licensing is currently being incorporated into the Environmental Permitting Regulations (see Permitted Installations).

5.6 Water Resources Act (WRA) 1991

Sections 161 to 161D of the Water Resources Act 1991 give the Environment Agency powers to take action to prevent or remedy the pollution of controlled waters. The Agency can serve a 'works notice' on any person who has 'caused or knowingly permitted' potential pollution to be in a place from which it is likely to enter controlled waters, or to have caused or knowingly permitted a pollutant to enter controlled waters. The works notice specifies what actions have to be taken in what time periods. Where urgent action is required or a works notice is not complied with, the Agency has the power to carry out the works itself and recover costs from the appropriate person.

The Water Resources Act may apply where the Part 2A regime does not, for example where there is historical pollution of groundwater.

The Water Act 2003 includes a provision, not yet commenced, to amend the current Part 2A definition of pollution of controlled waters to introduce a 'significance' test. The Government propose to return to this issue when a significance test for radioactive and non-radioactive contamination can be considered together.

5.7 Groundwater Regulations (GWR) 2009

The existing Groundwater Directive (80/68/EEC) aims to protect groundwater from pollution by controlling discharges and disposals of certain dangerous substances to groundwater. In the UK, the directive is implemented through the Groundwater Regulations (GWR) 2009.

Groundwater is protected under these regulations by preventing or limiting the inputs of polluting substances into groundwater. Substances controlled under these regulations fall into two categories:

- **Hazardous** substances are the most toxic and must be prevented from entering groundwater. Substances in this list may be disposed of to the ground, under a permit, but must not reach groundwater. They include pesticides, sheep dip, solvents, hydrocarbons, mercury, cadmium and cyanide. Hazardous substances replace the previous List 1 substances which came under the 1998 GWR.
- Non-hazardous pollutants are less dangerous, and can be discharged to groundwater under a permit, but must not cause pollution. Examples include sewage, trade effluent and most wastes. Non-hazardous pollutants include any substance capable of causing pollution and the list is much wider than the previous List 2 substances. For example, nitrate is included as a pollutant but it was excluded from List 2 in the 1998 GWR.

The existing Groundwater Directive is to be repealed by the Water Framework Directive 2000/60/EC (WFD) in 2013. The GWR 2009 has recently been made law to enact both the WFD and its Daughter Directive 2006/118/EC on the protection of groundwater. This new Groundwater Directive (2006/118/EC) is commonly referred to as the Groundwater Daughter Directive (GWDD).

5.8 Suitable for Use Approach

In practice, most sites with a previous potentially contaminating history are remediated to a condition 'suitable for use' under the planning regime rather than the Part 2A legislation.

The 'suitable for use' approach outlined in DEFRA Circular 01/2006 consists of the following three elements:

- Ensuring that land is suitable for its current use.
- Ensuring that land is made suitable for any new use, as planning permission is given for that new use.
- Limiting requirements for remediation to the work necessary to prevent unacceptable risks to human health or the environment in relation to the current use or future use of land for which planning permission is being sought.

Where new development is taking place, it will be the responsibility of the developer to carry out the necessary remediation. In most cases, the enforcement of any remediation requirements will be through planning conditions and building control, rather than through a remediation notice issued under Part 2A.

5.9 Assessment Methodology

The DEFRA and Environment Agency Contaminated Land Report 11 (CLR11) 'Model Procedures for the Management of Land Contamination' provides a technical framework for structured decision making about land contamination.

Definition of Risk

CLR11 defines risk as:

• A combination of probability, or frequency, of occurrence of a defined hazard and the magnitude of the consequences of the occurrence.

The Concept of the 'Pollutant Linkage'

In the context of contaminated land, there are three essential elements to any risk:

- A **contaminant (or source)** a substance that is in, on or under land and has the potential to cause harm or cause pollution of Controlled Waters.
- A **receptor** humans, ecological system, water body or property.
- A **pathway** a route or means by which a receptor can be exposed to, or affected by, a contaminant.

Each of these elements can exist separately; however, they create a risk only where they are linked together forming a **pollutant linkage**.

Conceptual Site Models

A conceptual site model represents the characteristics of the site in diagrammatic or written form that shows the possible relationships between contaminants, pathways and receptors.

The Tiered Risk Assessment Approach

CLR11 presents a tiered approach to risk:

Tier 1 Preliminary risk assessment (PRA)

The purpose of the preliminary risk assessment is to develop an initial conceptual model of the site and to establish whether or not there are potentially unacceptable risks. If potential risks are identified the initial conceptual model is developed in subsequent tiers of the risk assessment process.

Tier 2 Generic quantitative risk assessment (GQRA)

The purpose of the generic quantitative risk assessment is to establish whether generic assessment criteria and assumptions are appropriate for assessing the risks and, if so, to apply them to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed quantitative risk assessment is required.

Tier 3 *Detailed quantitative risk assessment (DQRA)*

The purpose of the detailed quantitative risk assessment is to establish and use more detailed site specific information and criteria to decide whether there are unacceptable risks. It may be used as the sole method of quantitative assessments of risks, or it may be used to refine earlier assessments using generic assessment criteria.

6. PRELIMINARY RISK ASSESSMENT AND OUTLINE CONCEPTUAL MODEL

6.1 Potential Contaminants of Concern

6.1.1 Area 1 & 2

Based on the historical and current usage of the site as formerly agricultural land and latterly as a quarry and landfill potential **on-site** contamination sources are likely to be limited to:

• Soil contaminants, landfill gas and leachates associated with the landfilled material and any general Made Ground.

- Any localised spillages or leakages of fuel or oils from machinery/vehicles or from the identified oil AST and petrol UST in the area of the large building in the western section of the site).
- Asbestos associated with the existing and former buildings etc.

6.1.2 Area 1 & 2

The potential **off-site** contamination sources are likely to be associated with the following current and historical uses:

- Contamination from a number of ASTs and USTs, and a chemical storage building (approximately 500m from Area 2) at Adastral Park which lies directly adjacent to the west boundary of Area 2 and the petrol USTs to the south of Area 1. A Phase II investigation was undertaken in the area of these potential sources on Adastral Park, and the limited contamination identified was not considered to be of significant risk.
- Landfill gas and leachates associated with the landfilled material.
- Potential ordnance associated with the adjacent airfield.

The potential limited contaminants of concern associated with the current and historical land uses outlined above include:

- Herbicides / pesticides (including DDT and dieldrin).
- Petroleum hydrocarbons (TPH) and polyaromatic hydrocarbons (PAHs).
- General contaminants including metals, semi-metals and non-metals, inorganic chemicals, organics and asbestos.
- Landfill gas and leachates.

A diagrammatic illustration for Area 1 and Area 2 of the outline conceptual model is presented in Figures 3A and 3B of Appendix A.

6.2 Preliminary Human Health Conceptual Model

Potential Sources: Potential contamination associated with the usage of

the site and adjacent land as detailed in Section 6.1.

Potential Pathways: Dermal contact with soil and dust, ingestion of home

grown produce and attached soil (residential areas only), inhalation of soil and dust, and the inhalation of indoor and outdoor vapours and ground gases. Potential combustion or explosion of ground gases in

confined spaces.

Potential Receptors: Future site users (residents, site workers, visitors,

construction/maintenance workers and potential trespassers). Also site flora and fauna and future

buildings/structures and construction materials (e.g. water supply pipes).

6.3 Preliminary Controlled Waters Conceptual Model

Potential Sources: Potential contamination associated with the usage of

the site and adjacent land as detailed in Section 6.1.

Potential Pathways: Infiltration of precipitation through the site's surface

and leaching of potential contaminants and subsequent vertical migration to the aquifer or

horizontal migration to the watercourse.

Potential Receptors: Underlying groundwater in the Principal and Secondary A Aquifers; 4 No. manmade lakes in the

Secondary A Aquifers; 4 No. manmade lakes in the north east edge of Area 1, which are associated with the quarry; the fishing pond located within the main site, approximately 15m south west of Area 1 and 55m south east from Area 2; and, the unnamed tributary stream which flows into the River Deben

approximately 500m north west.

The 2 No. on site groundwater abstraction licences associated with the quarry which will presumably have terminated/sealed by the time of development, but if remaining will potentially be at risk. The surface water abstraction approximately 75m to the south west of Area 1 is also potentially at risk. (The other surface water abstraction is considered too distant from the site to be at significant risk.)

6.4 Preliminary Ground Gas Assessment

6.4.1 Areas 1 & 2

Due to the historical landfills and anticipated significant thickness of Made Ground on the site, risks associated with ground gas are considered medium at this stage. (Further assessment is presented in Section 8.4 following the intrusive investigation.)

As previously described, the site is in an area where between 1% and 3% of properties are above the action level. Therefore, based on current guidance radon protective measures are not required.

7. INTRUSIVE INVESTIGATION

The following section outlines the scope of the intrusive investigation carried out by GEG and details the ground conditions encountered and the chemical testing undertaken.

7.1 Site Works

7.1.1 General

The following sections outline the scope of the intrusive investigation carried out by GEG and details the ground conditions encountered and the chemical testing undertaken.

All work was undertaken in accordance with current British Standard guidance (BS:5930 and BS:10175) and the ICE UK Specification for Ground Investigation (2nd Edition 2012) guidelines.

Prior to commencement of the works, service plans obtained from the client were viewed in order to identify the location of all major services.

The exploratory holes were logged and sampled by an experienced geoenvironmental engineer from GEG. The ground conditions encountered were recorded on the exploratory hole logs (Appendix C). Where strengths and relative densities are in brackets on the exploratory hole logs, these are based on visual assessment in accordance with BS:5930, in the absence of in-situ or laboratory tests.

The locations of the exploratory holes are shown on Figure 4A for Area 1, and Figure 4B for Area 2 presented in Appendix A.

7.2 Ordnance

According to the Unexploded Ordnance (UXO) report provided by the client due to the proximity to a historical airfield the risk of finding unexploded ordnance is considered medium. However, due to the fact that much of the site has since been disturbed by quarrying and landfilled, it is considered that any ordnance is likely to have already been removed or dealt with. As such, supervision by a UXO trained engineer was deemed unnecessary for the intrusive investigation.

No evidence of unexploded ordnance, ordnance residues or remnants of crashed aircraft was identified during the intrusive investigation.

7.3 Site Works – Area 1

7.3.1 General

Area 1 (main quarry area in the central and eastern sections of the site) of the intrusive investigation was undertaken on 21st to 23rd September 2016 and comprised trial pitting, window sample boreholes, and cable percussive boreholes as detailed in the following sections:

7.3.2 Limitations of Intrusive Investigation

Some exploratory hole positions were subject to relocation to avoid spoil heaps, active working areas and areas of public access (i.e. by Brett Aggregate customers).

Further post demolition investigation is required around the office buildings, areas inaccessible due to quarry machinery and workings, and in the vicinity of the

assumed refuelling tank to determine whether any soil and groundwater hydrocarbon contamination is present.

7.3.3 Cable Percussion Boreholes

9 No. 150mm diameter cable percussion boreholes (CP01-CP09) were drilled to a maximum depth of 15.45m. Disturbed samples were taken at each major strata change and regular intervals in between. In-situ standard penetration tests (SPTs) were carried out at regular intervals to confirm the strength/relative density.

5 No. positions were installed with 50mm diameter standpipes to depths detailed on the exploratory hole logs, for subsequent gas and groundwater monitoring.

7.3.4 Window Sample Holes

8 No. window sample boreholes (WSo1-WSo8) were drilled using a Competitor Dart dynamic sampling rig to a maximum depth of 6.45m. Continuous sampling was undertaken using a liner system and standard penetration tests (SPTs) were carried in each hole to confirm the strength/relative density.

All positions except WSo1 were installed with 50mm diameter standpipes to depths detailed on the exploratory hole logs, for subsequent gas and groundwater monitoring.

7.3.5 Trial Pits

13 No. trial pits (TP03-TP15) were excavated using a JCB-3CX to a maximum depth of 4.30m to facilitate investigation of the near surface soils.

7.3.6 Sampling

Samples were taken from the exploratory holes for geotechnical and chemical testing as described in Section 7.5 and 7.66 respectively.

7.3.7 Gas and Groundwater Monitoring

Gas and groundwater monitoring was undertaken on 3rd, 15th and 24th November 2016 targeting periods of falling atmospheric pressure where possible. The standpipes were monitored for methane, carbon dioxide, oxygen, hydrogen sulphide and the borehole gas flow rate using a GA2000 gas analyser. Atmospheric pressure and trend was also recorded.

Table 1. Area 1 Gas Monitoring Results

Borehole	Date	Atmospheric Pressure (mb)	Atmospheric Pressure Trend	Methane (% Vol.)	Carbon Dioxide (% Vol.)	Oxygen (% Vol.)	Hydrogen Sulphide (ppm)	Borehole Flow (l/hr)
	3/11/16	1014	Rising	15.5	2.4	2.3	0	0.0
CPo3	15/11/16	1007	Falling	12.5	5	0.6	0	0.2
	24/11/16	1016	Rising	0.0	0.1	20.7	0	0.1
	3/11/16	1014	Rising	0.0	0.2	18.9	0	0.2
CPo5	15/11/16	1007	Falling	0.1	0	21.2	0	0
	24/11/16	1016	Rising	0.0	0.1	20.6	0	0.2
CPo6	3/11/16	1014	Rising	0.0	2.2	13.5	0	0.0

Borehole	Date	Atmospheric Pressure (mb)	Atmospheric Pressure Trend	Methane (% Vol.)	Carbon Dioxide (% Vol.)	Oxygen (% Vol.)	Hydrogen Sulphide (ppm)	Borehole Flow (l/hr)
	15/11/16	1007	Falling	0.1	2.4	11.3	0	1.2
	24/11/16	1016	Rising	0.0	2.6	10.8	0	0.1
	3/11/16	1014	Rising	7.8	2.1	3.0	0	0.0
CPo7	15/11/16	1007	Falling	6.9	2.5	0.1	0	0.4
	24/11/16	1016	Rising	0.0	0.1	21	0	0.1
	3/11/16	1014	Rising	0.1	2.0	8.0	0	0.0
CPo9	15/11/16	1007	Falling	0.5	1.5	0.3	0	0.1
	24/11/16	1016	Rising	0.0	0.1	20.7	0	0.0
	3/11/16	1014	Rising	0.1	7.2	3.6	0	0.0
WS02	15/11/16	1007	Falling	0.3	5.5	0.5	0	0.4
	24/11/16	1016	Rising	0.3	7.5	0.4	0	0.1
	3/11/16	1014	Rising	0.1	1.1	19.8	0	0.0
WSo ₃	15/11/16	1007	Falling	0.1	0.1	20.46	0	0.1
	24/11/16	-	-	-	-	-	-	-
	3/11/16	1014	Rising	0.1	1.0	18.3	0	0.0
WS04	15/11/16	1007	Falling	0.1	1.0	19.5	0	0.4
	24/11/16	1016	Rising	0.0	0.05	20.8	0	0.3
	3/11/16	1014	Rising	0.1	1.9	6.1	0	0.0
WSo ₅	15/11/16	1007	Falling	0.1	1.5	7.5	0	0.1
	24/11/16	1016	Rising	0.0	0.1	19.6	0	0.0
	3/11/16	1014	Rising	0.1	3.7	13.0	0	0.0
WSo6	15/11/16	1007	Falling	0.1	3.1	12.4	0	0.4
	24/11/16	1017	Rising	0.0	3.4	12.3	0	0.1
	3/11/16	1014	Rising	9.2	3.1	2.8	0	0.0
WS07	15/11/16	1007	Falling	9.7	2.2	0.1	О	0.2
	24/11/16	1016	Rising	0.4	1.3	8.4	О	0.0
	3/11/16	1014	Rising	0.0	1.1	18.3	0	0.0
WSo8	15/11/16	-	-	-	-	-	-	-
	24/11/16	-	-	-	-	-	-	-

Notes: WS08 was accidently destroyed by quarry works between the $3^{\rm rd}$ November and $15^{\rm th}$ November 2016. WS03 was inaccessible on $24^{\rm th}$ November due to surface water.

The gas monitoring results recorded elevated methane concentrations of 0.0% to 15.5% and carbon dioxide concentrations of 0.0% to 7.2% with a maximum borehole flow rate 1.2 l/hr.

The water levels were monitored using a dip meter; results are presented in Section 7.7.2.5.

7.4 Site Works – Area 2

7.4.1 General

Area 2 of the intrusive investigation was carried out on 17th and 18th October 2016 and included trial pits and cable percussive boreholes in the Uncontrolled Landfill Area to the west of the main quarry site.

7.4.2 Limitations of Intrusive Investigation

Some exploratory hole positions were subject to relocation to avoid spoil heaps, active working areas and areas of public access (i.e. Brett Aggregate customers) as for Area 1.

Some of the trial pits and cable percussive boreholes (CP17a, CP17-20, and TP01) refused within the Made Ground (from depths of 1.41m up to 15.20m) due to large concrete boulders.

7.4.3 Cable Percussion Boreholes

8 No. 150mm diameter cable percussion boreholes (CP17a, CP17-CP2o, CP25, CP26, and CP28) were drilled to a maximum depth of 15.45m. Disturbed samples were taken at each major strata change and regular intervals in between. In-situ standard penetration tests (SPTs) were carried out at regular intervals to confirm the strength/relative density.

7.4.4 Trial Pits

11 No. trial pits (TP01-TP02, TP16-TP18, and TP20-TP25) were excavated using a JCB-3CX to a maximum depth of 4.10m to facilitate investigation of the near surface soils.

7.4.5 Sampling

Samples were taken from the exploratory holes for geotechnical and chemical testing as described in Section 7.5 and 7.6 respectively.

7.4.6 Gas and Groundwater Monitoring

Gas and groundwater monitoring was undertaken on 3rd, 15th and 24th November 2016, targeting periods of falling atmospheric pressure where possible. The standpipes were monitored for methane, carbon dioxide, oxygen, hydrogen sulphide and the borehole gas flow rate using a GA2000 gas analyser. Atmospheric pressure and trend was also recorded.

Table 2. Area 2 Gas Monitoring Results

Borehole	Date	Atmospheric Pressure (mb)	Atmospheric Pressure Trend	Methane (% Vol.)	Carbon Dioxide (% Vol.)	Oxygen (% Vol.)	Hydrogen Sulphide (ppm)	Borehole Flow (l/hr)
	3/11/16	1014	Rising	24.3	0.2	1.4	О	0.1
CP17a	15/11/16	1006	Falling	25.8	0.5	0.2	0	1.3
	24/11/16	1015	Falling	17.2	0.8	2.7	0	0.5
	3/11/16	1014	Rising	57.8	8.6	1.0	0	0.1
CP18	15/11/16	1006	Falling	60.3	7	2.2	0	0.3
	24/11/16	1015	Falling	0.2	1.4	20.2	0	0.0
	3/11/16	1014	Rising	0.3	2.2	4.6	0	0.0
CP19	15/11/16	1006	Falling	8.6	1.4	1.3	0	0.2
	24/11/16	1016	Falling	0.0	0.5	20.1	0	0.5
	3/11/16	1014	Rising	89.5	2.2	0.0	0	0.2
CP20	15/11/16	1006	Falling	74.2	2.5	0.7	0	1.4
	24/11/16	1015	Falling	15.9	2.6	13.4	0	0.2
	3/11/16	1014	Rising	4.6	10.9	1.3	0	0.1
CP25	15/11/16	1006	Falling	4.9	7.1	6.7	0	0.6
	24/11/16	1015	Falling	0.0	8.1	4.3	0	0.6
CP26	3/11/16	1014	Rising	0.1	4.7	15.8	0	0.0
C1 20	15/11/16	1006	Falling	0.0	1.1	19.7	0	0.3

Borehole	Date	Atmospheric Pressure (mb)	Atmospheric Pressure Trend	Methane (% Vol.)	Carbon Dioxide (% Vol.)	Oxygen (% Vol.)	Hydrogen Sulphide (ppm)	Borehole Flow (l/hr)
	24/11/16	1015	Falling	0.0	1.8	19.0	0	0.1
	3/11/16	1014	Rising	0.6	3.1	13.4	0	0.0
CP28	15/11/16	1006	Falling	0.6	6.4	6.4	0	0.2
	24/11/16	1016	Falling	0.0	0.1	21.1	0	0.0

The gas monitoring results recorded elevated methane concentrations of 0.0% to 89.5% and carbon dioxide concentrations of 0.2% to 10.9% with a maximum borehole flow rate 1.4 l/hr. The results are assessed in Section 8.4.

The water levels were monitored using a dip meter; results are presented in Section 7.7.2.5.

7.5 Geotechnical Laboratory Testing

Selected samples were despatched to Geo Site and Testing Services Limited and scheduled for geotechnical testing. The schedule of testing comprised:

7.5.1 Area 1

• 14 No. Particle Size Distribution Wet Sieve Method (BS1377: Part 2: 1990: 9.2)

13 No. water soluble sulphate and pH determinations were also undertaken on the natural soils as part of the chemical testing (Section 7.6).

7.5.2 Area 2

• 10 No. Particle Size Distribution Wet Sieve Method (BS1377: Part 2: 1990: 9.2)

8 No. water soluble sulphate and pH determinations were also undertaken on the natural soils as part of the chemical testing (Section 7.6).

The results of the geotechnical testing are presented in Appendix H.

7.6 Chemical Laboratory Testing

Samples were despatched to Scientific Analysis Laboratories Limited for chemical analysis.

7.6.1 Area 1

• 26 No. representative samples of Made Ground and 3 No. natural ground were scheduled for general chemical analysis.

7.6.2 Area 2

• 24 No. representative samples of Made Ground and 1 No. natural ground were scheduled for general chemical analysis.

• 11 No. groundwater samples were scheduled for general chemical analysis.

7.6.3 Areas 1 & 2

The schedule of analysis comprised a combination of a range of contaminants commonly identified on brownfield sites, together with specific determinands based on the former and current site and adjacent site uses, as identified below. All soil analysis was MCerts accredited where possible. The results of the chemical analysis are located in Appendix D.

Soils & Waters

Metals: Cadmium, chromium (total, III and VI),

copper, lead, nickel, zinc, mercury,

antimony#.

Semi-Metals and Non-Metals: Arsenic, boron, selenium, asbestos**.

Inorganic Chemicals: Cyanide (total and free), sulphate (soluble),

sulphide.

Others: pH, soil organic matter*, hardness^.

Organics: Total phenols, banded petroleum

hydrocarbons (TPHs), speciated polycyclic

aromatic hydrocarbons (PAHs).

7.7 Ground Conditions Encountered

The ground conditions encountered are described below and broadly confirmed the published geology. The strength/relative density of the strata is detailed further in the geotechnical assessment in Section 9.1.

7.7.1 Area 1

7.7.1.1 Made Ground

Made Ground was encountered across the majority of the site.

In the north west area of Area 1 the Made Ground was encountered to depths of up to 0.05 to 2.40m (TP09, TP10, CP04-CP06 and WS08) and typically consisted of clayey gravelly medium SAND with occasional flint and sandstone gravel and cobbles.

The Made Ground in the central and southern sections of the site was significantly deeper (to depths of up to 5.70-12.60m), and typically comprised loose to medium dense brown to yellowish brown medium silty gravelly SAND, or as brown to greyish brown very sandy gravelly CLAY, with occasional to numerous gravel to

^{*} Selected samples only

[#] Soils only

[^]Waters Only

cobble-sized fragments of concrete, brick, tarmacadam and with occasional cobble-sized pockets of clay and of silt. The gravel was sub-rounded flint.

Occasional ash fragments were encountered in WSo1B, WSo5, WSo7, TPo3, TPo5-TPo7 and TP15. Occasional cobble-sized timber, and metal fragments were found in TPo3 and TPo7, TP14, and TP15. Selected trial pits also encountered occasional cobble-sized fabric and plastic fragments. Numerous cobble-sized timber, metal and plastic fragments were encountered in TPo8 from 2.10m to at least 4.20m.

Occasional tyre in TPo3 from 3.20m to 3.30m, a slight peaty odour was encountered in 5 No. locations (TPo6, TPo7, TP12, TP14 and TP15) from depths of 1.10m to 3.80m.

Significant softened or low density horizons deeper than 1.00m but less than 2.50m are presented in Table 3A, and those in excess of 2.50m are presented in Table 3B.

Table 3A. Shallow Softened/Low Density Horizons in the Made Ground

Exploratory Hole	Depth (m)	Strength/Density
CP01	1.50-2.00	Very Loose to Loose
CP07	1.50-4.50m	Loose
CPo8	1.50-4.50m	Loose
CPo9	1.50-2.50m	Loose
WS02	1.00-3.00m	Loose
TP13	0.00-0.60m	Loose

Table 3B. Deeper Softened/Low Density Horizons in the Made Ground

Exploratory Hole	Depth (m)	Strength/Density
CP02	3.00-5.50m	Loose
СР03	6.00-8.40m	Soft
	4.50-5.20m	Soft
CP09	7.50-9.00m	Soft
	12.00-12.60m	Soft to Firm
WS02	3.00-4.00m	Soft
W502	4.00m-4.50m	Very Soft
WS04	3.00-3.50m	Very Loose to Loose
WS07	4.00-4.50m	Soft
TP11	3.30-4.30m	Soft to Firm

7.7.1.2 *Topsoil*

Natural topsoil was not encountered during the intrusive investigation.

7.7.1.3 Superficial Deposits

The Kesgrave Catchment Subgroup was encountered underlying the Made Ground in 4 No. of the exploratory holes (WS04, WS08, TP09, and TP10). It generally comprised loose to medium dense yellowish brown and orangish brown slightly gravelly medium SAND. The gravel was of sub angular flint, quartzite and occasionally sandstone.

7.7.1.4 The Red Crag Formation

The Red Crag Formation was encountered underlying the Made Ground in CPo1-CPo9, TP13 and WSo6 commencing from depths of 0.60-15.45m and underlying the Kesgrave Catchment Subgroup in WSo4 and WSo8, from depths of 3.50 and 2.00 respectively. It generally comprised medium dense to very dense yellowish brown to brown SAND with occasional whole shells.

7.7.1.5 Thames Clay Formation

The Thames Clay Formation was encountered underlying the Made Ground in 2 No. locations (CPo4 and CPo5 from depths of 12.00m and 10.70m respectively), as weak MUDSTONE, and as stiff brown silty CLAY.

7.7.1.6 Groundwater

Groundwater was encountered in some of the exploratory holes during the investigation as shown in Table 4A.

Table 4A. Groundwater Depths during the Investigation

Exploratory Hole	Groundwater Depth (m)	Stratum	Nature of Inflow
WS01	0.50	Made Ground	Ground Wet
WS02	4.50	KCS	Ground Wet
WSo ₅	4.00	Made Ground	Ground Wet
WSo7	4.50	Made Ground	Ground Wet
TPo6	3.20	Made Ground	Ground Damp
TPo7	3.00	Made Ground	Ground Damp
TPo8	3.90	Made Ground	Ground Damp
TP15	3.00	Made Ground	Ground Damp

Notes: KCS = Kesgrave Catchment Subgroup

Groundwater levels recorded in the boreholes during the subsequent monitoring visits are summarised in Table 4B.

Table 4B. Groundwater Depths during the Monitoring Visits

Borehole	Date	Depth of Installation (m)	Groundwater Depth (m)
	3/11/16		DRY
СРоз	16/11/16	10.00	DRY
	24/11/16		8.50
	3/11/16		3.00
CPo ₅	16/11/16	10.00	3.20
	24/11/16		2.90
	3/11/16		8.23
CPo6	16/11/16	10.00	8.10
	24/11/16		8.10
	3/11/16		DRY
CP07	16/11/16	10.00	DRY
	24/11/16		DRY
CPoo	3/11/16	10.00	8.74
CP09	16/11/16	10.00	8.50

Borehole	Date	Depth of Installation (m)	Groundwater Depth (m)
	24/11/16		8.50
	3/11/16		DRY
WS02	16/11/16	6.00	2.40
	24/11/16		2.40
	3/11/16		DRY
WSo ₃	16/11/16	1.00	0.10
	24/11/16		-
	3/11/16		DRY
WS04	16/11/16	4.00	DRY
	24/11/16		DRY
	3/11/16	4.50	4.10
WSo ₅	16/11/16		3.43
	24/11/16		3.50
	3/11/16		DRY
WSo6	16/11/16	4.10	DRY
	24/11/16		DRY
	3/11/16		DRY
WS07	16/11/16	6.00	DRY
	24/11/16		DRY
	3/11/16		DRY
WSo8	16/11/16	6.00	-
	24/11/16		-

Notes: WSo8 was accidently destroyed by quarry works between the 3^{rd} November and 16^{th} November 2016. WSo3 was inaccessible on 24^{th} November due to surface water.

Groundwater levels may vary due to seasonal and other effects, including the relatively short time periods for which the trial pits remained open and the speed of drilling of the window sample boreholes.

7.7.1.7 Stability of Trial Pits

The sides of all trial pit excavations in Area 1 were stable with the exception of slight instability from 0-0.20m in TP04, and 2.70m to 4.10m in TP05.

7.7.2 Area 2

7.7.2.1 Made Ground

Made Ground was encountered across the site.

It generally comprised loose to medium dense fine to medium SAND over medium dense to very dense clayey gravelly medium to coarse SAND with occasional to numerous gravel-sized to boulder-sized fragments of concrete and brick; with rare to occasional gravel to cobble-sized fragments of tarmacadam, rope, plastic and fabric. Occasional metal fragments were encountered in TP18, TP20, TP21, CP18, and CP26); and cobble to boulder-sized timber fragments (in TP18, TP20, TP23, TP25, CP18, and CP26). Gravel is of sub-rounded flint and quartzite. Numerous cobble sized peaty pockets were encountered in TP20 from 1.10m to 1.20m, and a slight peaty odour in TP23 from 1.30m to 1.40m and 3.00m to 3.39m, and in TP24 from 3.00m to 3.50m,

Significant softened or low density horizons deeper than 1.00m but less than 2.50m are presented in Table 5A, and those in excess of 2.50m are presented in Table 5B.

Table 5A. Shallow Softened/Low Density Horizons in the Made Ground

Exploratory Hole	Depth (m)	Strength/Density
CP17	1.60-2.50	Soft to firm
CP18	0.10-1.50m	Soft
CP20	1.50-3.00m	Loose
CP25	1.50-3.00m	Loose
CP28	1.50-2.50m	Loose

Table 5B. Deeper Softened/Low Density Horizons in the Made Ground

Exploratory Hole	Depth (m)	Strength/Density
TP20	3.00-3.85m	Loose
CP18	1.50-2.00m	Very soft to soft
CP18	4.50-6.00m	Soft to firm
CP18	6.00-7.00m	Soft
CP18	10.50-12.00m	Soft to firm
CP20	10.50-10.95m	Loose
CP25	4.50-5.00m	Loose
CP25	6.00-7.50m	Loose
CP28	4.50-6.00m	Loose

7.7.2.2 *Topsoil*

Natural topsoil was not encountered during the intrusive investigation.

7.7.2.3 Superficial Deposits

The Kesgrave Catchment Subgroup was not encountered during the investigation.

7.7.2.4 Solid Geology

The Red Crag Formation was encountered underlying the Made Ground in CP25, CP26, CP28 and TP17 commencing from depths of 1.70m-6.80m. It generally comprised medium dense to very dense yellowish brown to brown SAND with numerous shell fragments and occasional whole shells, over orangish brown weak SANDSTONE in CP25 from 10.50m to 15.00m, CP26 from 12.00m to 14.00m, and in CP28 from 9.00m to 15.45m.

7.7.2.5 *Groundwater*

No groundwater was encountered during the intrusive investigation.

Groundwater levels recorded in the boreholes during the subsequent monitoring visits are summarised in Table 6.

Table 6. Groundwater Depths during the Monitoring Visits

Borehole	Date	Depth of Installation (m)	Groundwater Depth (m)
	3/11/16		DRY
CP17a	16/11/16	6.50	DRY
	24/11/16		DRY
	3/11/16		9.01
CP18	16/11/16	15.20	9.10
	24/11/16		9.50
	3/11/16		4.53
CP19	16/11/16	5.60	4.21
	24/11/16		4.50
	3/11/16		8.80
CP20	16/11/16	11.00	9.50
	24/11/16		9.50
	3/11/16		11.07
CP25	16/11/16	15.00	11.10
	24/11/16		11.00
	3/11/16		11.80
CP26	16/11/16	14.00	11.50
	24/11/16		11.20
	3/11/16	45.00	10.78
CP28	16/11/16	15.00	10.45
	24/11/16		10.50

Groundwater levels may vary due to seasonal and other effects, including the relatively short time periods for which the trial pits remained open.

7.7.2.6 Stability of Trial Pits

The sides of all trial pit excavations were stable in Area 2.

7.7.3 Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of contamination was encountered in any of the exploratory holes undertaken, with the exception of rare to occasional medium gravel-sized fragments of tarmacadam and ash, locally within the Made Ground.

7.7.4 Ordnance

No visual evidence of ordnance was encountered in any of the exploratory holes undertaken.

8. GENERIC HUMAN HEALTH QUANTITATIVE RISK ASSESSMENT

8.1 Generic Human Health QRA

8.1.1 CLEA

A generic human health quantitative risk assessment has been undertaken primarily using the CLEA software.

Generic assessment criteria (GAC) derived in CLEA, assuming a 'sand' soil type of pH 7 and SOM of 1% were used in the assessment of the Made Ground and natural ground of Areas 1 & 2.

The 'residential with home grown produce' for a semi-detached property has been used in the assessment as this is the most sensitive generic land use and building type in the CLEA model as the current worst case scenario applicable to the proposed development. However sections of the site maybe re-assessed upon finalisation of the proposed layout plan.

The exposure pathways used in the CLEA model were:

- Ingestion of soil and dust
- Ingestion of home grown produce and attached soil
- Dermal contact with soil and dust
- Inhalation of soil and dust
- Inhalation of vapours outdoors
- Inhalation of vapours indoors

8.1.2 Other Assessment Criteria

The Risk Based Corrective Action (RBCA) Toolkit has been used to derive assessment criteria for organic compounds not covered by the CLEA Model.

A GEG in-house GAC for total cyanide (for all end uses) has been derived based on acute toxicity and a one-time soil ingestion event.

The following contaminants were not assessed as they are not generally considered to represent a significant risk to human health: sulphate and sulphide.

8.1.3 PAH Profiling

Methodology

HPA (2010) has recommended benzo(a)pyrene as a surrogate marker for the assessment of the risks posed by genotoxic PAH compounds where sufficiently similar to the 2 No. coal tar mixtures investigated by Culp *et al.* (1998).

By using a PAH profiling tool, it is possible to assess how closely the ratio of benzo(a)pyrene correlates to the standard mixtures of PAHs. If the mean results are within $\pm x10$ of the 2 No. coal tar mixtures then it is possible to use benzo(a)pyrene as a surrogate PAH marker.

<u>Assessment</u>

The assessment is presented in Appendix E and confirms that samples which recorded PAH levels in the Made Ground for both Area 1 (7 No. samples) & Area 2 (13 No. samples) above the laboratory detection limit showed PAH profiles sufficiently similar to the Culp coal tar profiles to allow benzo(a)pyrene to be used

as a surrogate marker. The majority of positive results were found to be within $\pm x5.0$ and all were within the HPA limit of $\pm x10$ the coal tar profiles. The remaining samples for Area 1 (7 No. samples) and Area 2 (10 No. samples) were classified as non-coal tar PAHs.

Benzo(a)pyrene was not detected in the natural ground; consequently PAH profiling was not appropriate and as such the individual PAHs were assessed separately.

8.2 Statistical Analysis of Soil Chemical Data

8.2.1 Methodology

The chemical analysis results from this investigation have been subjected to statistical analysis as detailed in the guidance produced by the Chartered Institute of Environmental Health (CIEH) (CIEH/CL:AIRE, May 2008) where sufficient data is available.

For details of the statistical tests and hypotheses, reference should be made to the aforementioned publication. However, a brief overview is presented below.

In the first instance, a Null Hypothesis (H₀) and Alternative Hypothesis (H₁) are defined as below, in this case based on the Planning Scenario:

 H_0 $\mu \ge Cc$ i.e. the true mean concentration (μ) is equal to or greater than the critical concentration (Cc)

 H_1 μ < Cc i.e. the true mean concentration (μ) is less than the critical concentration (Cc)

The data is firstly split into averaging areas based on historical site uses etc. For this site the data has been designated as Made Ground and natural ground soil concentrations for Areas 1 & 2 where random sampling was undertaken (as the statistical analysis is not applicable for targeted sampling). The PAH data has been split into coal tar PAH's and non-coal tar PAH's.

An outlier test (Grubb's Test) is undertaken to determine whether the soil concentrations for each determinand and averaging area belong to the same or are part of a separate population i.e. represent outliers or 'hot spots'.

A normality test is then undertaken to determine if the data is normally distributed, or otherwise.

A significance test (dependent upon the distribution of the data) is then applied to the data to test H_0 and H_1 , and determine the associated level of evidence against H_0 .

The GAC are used as critical concentrations in the assessment.

The one sample t-test is undertaken for Normal data and the Chebychev test for Non-normal data. The former derives a single value for the level of evidence against H_0 , whereas the latter derives upper and lower bound values.

The ESI Ltd Contaminated Land Statistical Calculator has been used to undertake the aforementioned statistical assessments and the output tables are presented in Appendix F and summarised in the following sections.

8.2.2 Made Ground

8.2.2.1 Area 1 Outliers ('Hotspots')

The following 5 No. hotspots comprising 6 No. 'outliers' were identified in the Made Ground by the statistical analysis of the chemical data:

- 1 No. 'hotspot' in TPo6 at 0.60m of mercury 2 mg/kg.
- 1 No. 'hotspot' in TP11 at 0.30m of lead 260 mg/kg; benzo(a)pyrene (coal tar PAH surrogate marker) 1.4 mg/kg.
- 1 No. 'hotspot' in TP14 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 1.1 mg/kg.
- 1 No. 'hotspot' in TP15 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 1.5 mg/kg.
- 1 No. 'hotspot' in WSo6 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 2.6 mg/kg.

The levels of benzo(a)pyrene recorded in selected 'hotspots' were above the generic GEG CLEA derived inhalation health criteria value of 1.74 mg/kg and as such further assessment of all the volatile PAHs is recommended to confirm risks associated with the inhalation pathway and requirements for VOC membranes.

8.2.2.2 *Area 1 Significance Tests (Widespread Contaminants)*

Statistical analysis of the chemical data from the samples of Made Ground in Area 1 with the outliers excluded identified that the upper confidence limits of the true mean for benzo(a)pyrene (coal tar PAH surrogate marker) (1.72 mg/kg) was above the relevant critical concentration (0.98 mg/kg). This indicates potential widespread coal tar PAH contamination in the Made Ground in the areas of TP05, TP10, TP11, TP13-TP15 and Ws06. However, the evidence level of 34% was below the required 95% indicating the requirement for additional data

The upper confidence limits of the true mean for all other determinands listed below were below the relevant critical concentrations indicating the absence of further widespread contamination:

- Metals (arsenic, cadmium, total chromium (chromium (total, III and VI), copper, lead, mercury, nickel and zinc).
- Semi-metals and non-metals (boron and selenium).
- Inorganic chemicals (total and free cyanide).
- Organics (total phenols, C6-C40 banded petroleum hydrocarbons, USEPA 16 polycyclic aromatic hydrocarbons [naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene,

indeno(123-cd)pyrene, benzo(ghi)perylene]. dibenzo(ah)anthracene

and

8.2.2.3 Area 2 Outliers ('Hotspots')

The following 3 No. hotspots were identified in the Made Ground:

- 1 No. 'hotspot' in TPo2 at 0.20m of arsenic 33 mg/kg.
- 1 No. 'hotspot' in TP24 at 0.25m of arsenic 36 mg/kg.
- 1 No. 'hotspots' in TP21 at 3.00m of benzo(a)pyrene (coal tar PAH surrogate marker) 20 mg/kg.

The levels of benzo(a)pyrene recorded in the above 'hotspot' was above the generic GEG CLEA derived inhalation health criteria value of 1.74 mg/kg and as such further assessment of all the volatile PAHs is recommended to confirm risks associated with the inhalation pathway and requirements for VOC membranes.

8.2.2.4 *Area 2 Significance Tests (Widespread Contaminants)*

Statistical analysis of the chemical data from the samples of Made Ground from Area 2 with the outliers excluded identified that the upper confidence limits of the true mean were below the relevant critical concentrations (indicating the absence of widespread contamination in the Made Ground) for all determinands including:

- Metals (arsenic, cadmium, total chromium (chromium (total, III and VI), copper, lead, mercury, nickel and zinc).
- Semi-metals and non-metals (boron and selenium).
- Inorganic chemicals (total and free cyanide).
- Organics (total phenols, C6-C40 banded petroleum hydrocarbons, USEPA, coal tar polycyclic aromatic hydrocarbons, 16 polycyclic aromatic hydrocarbons [naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, dibenzo(ah)anthracene and benzo(ghi)perylene].

Low levels of TPHs (up to a total of 170 mg/kg) in the C12-C40 range and PAHs (up to a total of 17mg/kg) were also identified in the shallow Made Ground of Area 2 which, although below the relevant GAC, are a potential risk to underground plastic services (see Section 9.5).

8.2.3 Areas 1 & 2 Asbestos - Made Ground

No asbestos was identified in the 14 No. samples of Made Ground screened in Area 1 and 24 No. samples of Made Ground screened in Area 2.

8.2.4 Areas 1 & 2 Natural Ground

The natural ground chemical analyses were screened directly against the critical concentrations as shown in Table 1A and 1B (Appendix G) as the data set was limited (1 No. sample in Area 1, and 1 No. sample in Area 2).

The following 'exceedance' / localised contaminant has been identified in the natural ground in Area 2:

• 1 No. 'exceedance' in TP17 at 2.30m of lead 360 mg/kg.

All other determinands were below the relevant critical concentrations including:

- Metals (arsenic, cadmium, total chromium, chromium VI, copper, lead (in Area 1), mercury, nickel and zinc).
- Semi-metals and non-metals (boron and selenium).
- Inorganic chemicals (total and free cyanide).
- Organics (total phenols, C6-C40 banded petroleum hydrocarbons, USEPA 16 polycyclic aromatic hydrocarbons [naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, dibenzo(ah)anthracene and benzo(ghi)perylene].

8.2.4.1 Asbestos - Natural Ground

No asbestos was identified in the 1 No. sample of natural ground screened in Area 1.

8.2.5 Summary of Soil Contamination

8.2.5.1 Area 1

The following 'hotspots' / localised contaminants have been identified in the Made Ground:

- 1 No. 'hotspot' in TPo6 at 0.60m of mercury 2 mg/kg.
- 1 No. 'hotspot' in TP11 at 0.30m of lead 260 mg/kg; benzo(a)pyrene (coal tar PAH surrogate marker) 1.4 mg/kg.
- 1 No. 'hotspot' in TP14 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 1.1 mg/kg.
- 1 No. 'hotspot' in TP15 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 1.5 mg/kg.
- 1 No. 'hotspot' in WSo6 at 0.10m of benzo(a)pyrene (coal tar PAH surrogate marker) 2.6 mg/kg.

Potential widespread coal tar PAH contamination was identified in the Made Ground in the areas of TPo5, TP10, TP11, TP13-TP15 and Wso6, and further data is required.

No exceedances / localised contaminants have been identified in the natural ground.

No asbestos was identified in the soils.

8.2.5.2 Area 2

The following 'hotspots' / localised contaminants have been identified in the Made Ground:

- 1 No. 'hotspot' in TPo2 at 0.20m of arsenic 33 mg/kg.
- 1 No. 'hotspot' in TP24 at 0.25m of arsenic 36 mg/kg.
- 1 No. 'hotspots' in TP21 at 3.00m of benzo(a)pyrene (coal tar PAH surrogate marker) 20 mg/kg.

The following 'exceedances' / localised contaminants have been identified in the natural ground:

• 1 No. 'exceedance' in TP17 at 2.30m of lead 360 mg/kg.

The PAHs identified also represent a potential vapour risk and as such further assessment is required to confirm risks associated with the inhalation pathway and requirements for VOC membranes.

No asbestos was identified in the soils.

8.2.5.3 Areas 1 & 2

Low levels of TPHs (up to a total of 170 mg/kg) in the C12-C40 range and PAHs (up to a total of 17 mg/kg) were also identified in the shallow Made Ground which although below the relevant GAC are a potential risk to underground plastic services (see Section 9.5).

8.2.6 Source of Identified Soil Contamination

The contaminants are likely to be principally associated with the historical landfilling of the site. Current quarrying activities (including associated tanks) may also have contributed to the contamination detected e.g. the coal tar PAHs in the area of WSo6 which were located in an area where quarrying plant was parked.

8.3 Generic Controlled Waters Quantitative Risk Assessment

In view of the Preliminary Controlled Waters Conceptual Site Model, which has identified the underlying aquifers as the principle receptors, the Water Quality (Water Supply) Regulations 2000 (Drinking Water Standards [DWS]) were used in preference as generic assessment criteria for the assessment of the potential risks to Controlled Waters from contaminants within groundwater, as the underlying Secondary A and Principal Aquifers are considered to be the closest controlled water receptors. Environmental Quality Standards (EQS), Surface Water

(Abstraction for Drinking Water) Regulations 1996 (SWAD) and World Health Organisation guidelines (WHO) have been used where DWS are not available. Benzo(a)pyrene and naphthalene have been used as marker compounds for the individual PAH.

8.3.1 Area 1

No groundwater analyses were undertaken during the investigation.

8.3.2 Area 2

The 10 No. groundwater chemical test results from the uncontrolled landfill area undertaken on the 16th and 24th November 2016 are summarised in Table 2A and 2B in Appendix G and compared with the assessment criteria.

All determinands were below their respective assessment criteria with the exception of TPH, and total PAHs as described below.

TPHs

TPH (sum of C6-C40) was recorded at a level of 1.7 mg/l in CP18; 10 mg/l in CP19; and 20 mg/l in CP20; on the first visit on the 16th November 2016 which are two to three orders of magnitude above the screening criteria of 0.05 mg/l.

TPH (sum of C6-C40) was recorded at a level of 1.5 mg/l in CP19, and 1.8 mg/l in CP20 on the second visit on the 24th November 2016 which are two to three orders of magnitude above the screening criteria of 0.05 mg/l.

PAHs

Total PAHs were recorded at a level of 570 ug/l in CP18, 330 ug/l in CP19; 650 ug/l in CP20, and 1.6 ug/l in CP26; on the first visit on the 16th November 2016 which are one to three of magnitude above the DWS of 0.1 ug/l.

Total PAHs were recorded at a level of 2.7 ug/l in CP18, 10 ug/l in CP19; 1.6 ug/l in CP20, and 0.3 ug/l in CP28; on the second visit on the 24th November 2016 which are one to two orders of magnitude above the DWS of 0.1 ug/l.

Benzo(a)pyrene

Elevated benzo(a)pyrene was recorded in 3 No. locations during the first visit on the 16th November 2016, at levels of 45ug/l in CP18; 27ug/l in CP19; and 44 ug/l in CP20, which are three orders of magnitude above the DWS of 0.01ug/l.

Elevated benzo(a)pyrene was recorded in 3 No. locations during the first visit on the 24th November 2016, at levels of 0.12ug/l in CP18; 0.56ug/l in CP19; and 0.02 ug/l in CP20, which are one to two orders of magnitude above the DWS of 0.01ug/l.

8.3.2.1 Source of Identified Groundwater Contamination

Elevated concentrations of TPHs, total PAHs and benzo(a)pyrene have been identified in the groundwater. In light of the historical and current history of the

site and its surroundings (landfill and quarry workings including associated tanks) the identified groundwater concentrations are considered most likely to relate to background levels.

8.4 Ground Gas Risk Assessment

As previously described, the site is in an area where between 1% and 3% of properties are above the action level. Therefore, based on current guidance radon protective measures are not required.

The assessment below is based on the levels recorded to date. 3 No. of the monitoring wells showed significant borehole flow results on the 2nd visit (1.2l/hr in CP06 in Area 1; and 1.3l/hr in CP17, and 1.4l/hr in CP20 in Area 2).

8.4.1 Area 1

The gas monitoring results obtained have been assessed against CIRIA C665 'Assessing risks posed by hazardous ground gas to buildings' for 'low rise traditional housing' in order to reflect the most sensitive aspects of the proposed development. Using a maximum concentrations of carbon dioxide and methane of 7.5% and 15.5% respectively and the maximum recorded borehole flow rate of 1.2 l/hr, this corresponds to gas screening values (GSV) of 0.09 l/hr and 0.18 l/hr respectively for carbon dioxide and methane. Therefore, according to Table 8.7 of CIRIA C665 (for use for low-rise traditional housing) using the typical maximum concentrations of carbon dioxide and methane the site is characterised as 'Amber 2'.

8.4.2 Area 2

The gas monitoring results obtained have been assessed against CIRIA C665 'Assessing risks posed by hazardous ground gas to buildings' for 'low rise traditional housing' in order to reflect the most sensitive aspects of the proposed development. Using a maximum concentrations of carbon dioxide and methane of 10.9% and 89.5% respectively and the maximum recorded borehole flow rate of 1.4 l/hr, this corresponds to gas screening values (GSV) of 0.15 l/hr and 1.25 l/hr respectively. Therefore, according to Table 8.7 of CIRIA C665 (for use for low-rise traditional housing) using the typical maximum concentrations of carbon dioxide and methane the site is characterised as from 'Red'.

However, with reference to Figure 5, it is noted that Area 2 is proposed for POS (OS1).

9. GEOTECHNICAL CONCLUSIONS AND RECOMMENDATIONS

9.1 Overview

9.1.1 Summary of Strata Encountered

9.1.2 Area 1

Made Ground was encountered across the majority of the site.

In the north west area of the site the made ground was encountered to depths of up to 0.05 to 2.40m in 6 No. locations and typically consisted of clayey gravelly medium SAND with occasional flint and sandstone gravel and cobbles.

The Made Ground in the central and southern sections of the site was significantly deeper (to depths of up to 5.70-12.60m), and typically comprised loose to medium dense medium silty gravelly SAND, or as very sandy gravelly silt CLAY, with occasional to numerous gravel to cobble-sized fragments of concrete, brick, tarmacadam and with occasional cobble-sized pockets of clay and of silt. Gravel is of sub-rounded flint. With occasional ash fragments in 8 No. locations; a slight peaty odour in 5 No. locations; and cobble-sized timber fragments in 5 No. locations.

Natural topsoil was not encountered during the intrusive investigation.

The Kesgrave Catchment Subgroup was encountered underlying the Made Ground in 4 No. of the exploratory holes. It generally comprised loose to medium dense slightly gravelly medium SAND. Gravel is of sub angular flint, quartzite and occasionally sandstone.

The Red Crag Formation was encountered underlying the Made Ground in 11 No. locations; and underlying the Kesgrave Catchment Subgroup in 2 No. locations. It generally comprised medium dense to very dense SAND with occasional whole shells.

The Thames Clay Formation was encountered under the made ground in 2 No. locations as weak MUDSTONE, and as stiff brown silty CLAY.

9.1.3 Area 2

Made Ground was encountered across the site.

It generally comprised loose to medium dense fine to medium SAND over medium dense to very dense clayey gravelly medium to coarse SAND with occasional to numerous gravel-sized to boulder-sized fragments of concrete and brick; with rare to occasional gravel to cobble-sized fragments of tarmacadam rope, plastic and fabric. And with occasional metal fragments in 5 No. locations, and cobble to boulder-sized timber fragments in 6 No. locations. Gravel is of sub-rounded flint and quartzite. Numerous cobble-sized peaty pockets were encountered in TP20, and a slight peaty odour was encountered in 2 No. locations.

Natural topsoil was not encountered during the intrusive investigation.

The Kesgrave Catchment Subgroup was not encountered during the investigation.

The Red Crag Formation was encountered underlying the Made Ground in 4 No. locations. It generally comprised medium dense to very dense SAND with numerous shell fragments and occasional whole shells, over extremely weak SANDSTONE in 3 No. locations.

9.1.4 Groundwater

Groundwater was encountered in 4 No. trial pits during the intrusive investigation from 0.50m to 4.50m as damp to wet ground.

Groundwater was encountered in the installed boreholes during subsequent monitoring visits in 8 No. of the 12 No. cable percussion boreholes locations from 3.00m to 11.80m, and in 1 No. of the 8 No. window sample locations at 4.10m.

9.1.5 Trial Pit Stability

The sides of all trial pit excavations were stable with the exception of slightly unstable sides in 2 No. locations in Area 1: from 0-0.20m in TP04, and 2.70m to 4.10m in TP05.

9.1.6 Relative Density

9.1.6.1 Area 1

A total of 50 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the Made Ground, which recorded 'N' values from 4 to 50 corresponding to a relative density of very loose to very dense, and soft to stiff at depths of 1.00m to 12.60m.

5 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the granular soils of the Superficial Deposits, which recorded 'N' values from 4 to 39 corresponding to a relative density of very loose to dense at depths of 1.00m to 3.50m. The data is shown in Graph 1 (Appendix I).

A total of 17 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the granular soils of the weathered solid geology, which recorded 'N' values from 1 to 50 corresponding to a relative density of very loose to very dense at depths of 0.30m to 15.45m. The data is shown in Graph 2 (Appendix I).

17 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the cohesive soils of the weathered solid geology, which recorded 'N' values from 21 to 23 corresponding to a relative density of stiff at depths of 10.70m to 15.45m. The data is shown in Graph 3 (Appendix I).

9.1.6.2 *Area 2*

A total of 39 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the Made Ground, which recorded 'N' values from 4 to 0/0mm corresponding to a relative density of very loose to very dense, and soft to very stiff at depths of 1.50m to 15.20m.

8 No. standard/cone penetration tests (SPTs/CPTs) were undertaken in the granular soils of the weathered solid geology, which recorded 'N' values from 8 to 14 corresponding to a relative density of loose to medium dense at depths of 5.00m to 10.50m. The data is shown in Graph 4 (Appendix I).

9.1.7 Rock Strengths

9.1.7.1 Area 1

A total of 42 'N' values greater than 50 (from 50/294mm to 10/0mm) were recorded in the weathered solid geology from depths of 3.00m to 15.45m indicating extremely weak to weak bedrock (based on the Geological Society Working Party Report - 1970).

9.1.7.2 Area 2

A total of 11 'N' values greater than 50 (from 50/287mm to 50/133mm) were recorded in the weathered solid geology from depths of 9.00m to 15.45m indicating extremely weak to weak bedrock (based on the Geological Society Working Party Report - 1970).

9.1.8 Proposed Development

As previously outlined, the current proposed development of the site comprises up to 2000 homes, an employment area of co.6ha (use class B1), a secondary local centre (comprising use classes A1, A3, A5 and D2), a school, green infrastructure (including Suitable Accessible Natural Greenspace (SANGs), outdoor play areas, sports ground and allotments/ community orchards, public footpaths and cycleways, vehicle access, and associated infrastructure.

9.2 Foundations

9.2.1 Geotechnical Constraints

The following potential geotechnical constraints have been identified in both Area 1 and Area 2:

- Significant and varying depths of Made Ground (from depths of 0.05 up to 15.2m)
- Local softening and low density horizons and variability in the Made Ground.
- Localised shallow instability in excavations from depths of up to 0.20m to 2.50m in 6 No locations in Area 1, and 5 No. locations in Area 2.
- Local low density horizons in the natural ground (e.g. in the area of WS02, WS04 and WS06 in Area 1, and CP25 and CP28 in Area 2).

9.2.2 Foundation Types

9.2.2.1 Shallow/Trench Fill Foundations

Based on the information to date, current site levels and subject to the final layout, shallow/trench fill foundations are likely to be suitable only for the north western part of Area 1 where the Made Ground was significantly shallower than the rest of the site (0.05m to 2.40m). Area 2 is proposed for POS therefore no structures are envisaged here.

It is recommended that foundation loads are transferred onto the medium dense granular soils of the Kesgrave Catchment Group or Red Crag Formation, utilising traditional strip/trench foundations.

An allowable bearing pressure of 100 kN/m^2 is recommended based on total settlements of less than 25 mm for 0.60 m wide foundations for this stratum.

Further investigation of localised loosening of the natural strata is recommended (e.g. in the area WSo4) to confirm suitability of shallow foundations and bearing capacity in this area.

9.2.2.2 Alternative Foundations

The Made Ground is not considered suitable bearing strata due to its inherent variability which may result in unacceptable differential settlements.

Consequently, consideration is given below to the following potential foundation solutions:

- 1. Raft foundations
- 2. Vibro stone columns
- 3. Piled foundations

Raft foundations are not considered suitable at this stage for the site based on the significant variability in the Made Ground and presence of biodegradable materials including timber and metal fragments, the proportions of which are significant in selected locations. Further delineation of the Made Ground may however, be beneficial.

Vibro stone columns are similarly considered potentially unsuitable for the site based on the significant variability in the Made Ground and presence of biodegradable materials together with soft layers which could affect the integrity of the columns.

Consequently, it is recommended that foundation loads are transferred onto the medium dense to very dense granular or extremely weak to weak sandstone of the weathered Red Crag Formation utilising piled foundations.

The piled foundations are likely to be required to extend into the competent strata (very weak SANDSTONE) at around 9.00m to 15.45m

Driven piles are likely to be the most economic pile type, however, it is recommended that a specialist piling contractor is contacted to design and warrant a suitable system. Given the risk to the underlying Aquifers, the Environment Agency may require CFA piles to reduce the potential creation of a preferable migration pathway for residual contaminants.

9.2.3 Anticipated Foundation Depths

Shallow/Trench Fill Foundations

Based on NHBC Chapter 4.2, for any potential shallow foundations in the north west area, minimum foundation depths of 0.75m are recommended for the

granular soils. However, based on the strata encountered, likely foundation depths of 0.75m to 2.40m are anticipated.

Piled Foundations

9.2.3.1 Area 1

Depths of piled foundations are likely to range from 5.00m-15.00m.

9.2.3.2 Area 2

This is currently outside the proposed development area. However, should development be proposed for this zone, depths of piled foundations would be likely to be in the range of 6.00m to in excess of 15.20m under the Made Ground.

9.2.4 Reinforcement of Foundations

It is unlikely that reinforcement will be required as the foundation formation is anticipated to be uniform. However, should variation of the natural granular strata be identified on the site in the foundation formation, it is recommended that foundations are suitably reinforced due to the potential for differential settlement across the foundation.

9.2.5 Deepening of Foundations due to Trees

Deepening of foundations with respect to former, current, and proposed trees is unlikely to be required due to the granular nature of the underlying strata.

9.2.6 Deepening of Foundations due to Made Ground

Deepening of foundations due to Made Ground will be required across those parts of Area 1 where traditional foundations are utilized.

9.2.7 Deepening of Foundations due to Soft/Loose Strata

Foundations should be deepened below any very loose to loose strata.

9.2.8 Former Structures/Footings

Deepening of foundations in the areas of former structures/footings is unlikely to be required, except in the area of any former and current quarry buildings.

9.2.9 Inspection of Foundation Excavations

It is recommended that the proposed founding formations are inspected by a suitably qualified geotechnical engineer prior to construction.

9.2.10 Floor Slabs

Suspended floor slabs are envisaged for the majority of Area 1.

9.2.11 Heave Precautions

Heave Precautions Heave precautions are unlikely to be required based on the predominantly granular nature of the weathered solid strata. However, where required, these should be incorporated in accordance with NHBC Ch. 4.2.

9.3 Chemical Attack on Buried Concrete

For both Areas 1 and 2, on the basis of the maximum soil soluble sulphate concentration for the majority of the site of 0.2 g/l (200mg/l), and most acidic pH of 6.6, ACEC Class AC-1s (Design Class DS-1) conditions are indicated to typically prevail in the near surface soils on the most of the site as defined in BRE Special Digest 1 (2005) for foundations, based on static groundwater conditions.

9.4 Flooding

According to the Environment Agency, the site is not located within an area at risk from flooding.

9.5 Underground Plastic Services

Special precautions with respect to protection of underground plastic water mains are not considered necessary for the majority of the site. However, total PAH level of 600mg/kg and low levels of TPH (up to 440mg/kg) were identified locally in the Made Ground which will either require removal or localised specific water mains pipe work resistant to organic compounds, subject to confirmation by the local water company.

9.6 Slope Stability and Retaining Walls

As outlined in Section 2.2, a moderate slope exists in the northern section of the main site, falling southwards between Area 2 and Area 1. However, based on the initial visible inspection, it currently appears stable.

Slope stability associated with exposed and buried high walls is likely to be a localised issue related to the edges of the existing and historical quarrying. On the site and will require addressing as part of a more detailed investigation.

Any proposed retaining walls would need to be designed by a suitably experienced engineer.

It should be noted that any additional loading of the slope from buildings or infrastructure on the slope, leaking drainage, steepening or undercutting etc. may affect the stability and cause failure.

9.7 Earthworks

In general shallow excavations are likely to be stable for short periods of time. Shoring/battering back or 'banking' is required in all cases where access for personnel is required to trenches in excess of 1.2m in accordance with current Health and Safety requirements and is considered essential.

Potential earthworks are unknown at this stage. Subject to further testing, suitable compaction and control of moisture content, the natural granular soils are potentially suitable as engineering fill on the site.

For more information, reference should be made to the Earthworks Specification Report completed by GEG on 18th June 2016.

Fault Reactivation 9.8

No significant faults are indicated on the site.

Excavations 9.9

Dewatering of excavations is unlikely to be required except during periods of heavy precipitation or if excavations are to remain open for prolonged periods.

Shallow excavations are likely to be stable for short periods of time. However, where excavations extend beyond 1.20m depth, and access for personnel is required, appropriate shoring will be required in accordance with current Health and Safety requirements.

9.10 Road Pavement Design

At this stage, prior to in situ CBR testing, a CBR design value of 20% is recommended locally for the natural granular soils and <2% for geotechnically suitable Made Ground.

9.11 Loose/Soft Spots

The formation (of foundations, floor slabs and roads etc.) should be inspected for soft/loose spots by a suitably experienced geotechnical engineer. Soft spots if encountered should be removed and replaced with suitable well compacted granular material/lean mix concrete as deemed appropriate. Soft spots beneath roads may also require the use of additional geotextiles. Any loose soils at formation level may need to be proof rolled to increase their relative density.

10. **ENVIRONMENTAL CONCLUSIONS & RECOMMENDATIONS**

Following the findings of the intrusive investigation and generic quantitative risk assessment, the preliminary conceptual site model has been revised as outlined below in Sections 10.1.1 and 10.1.2 and as illustrated in Figures 6A, 6B, 7A and 7B of Appendix A.

10.1 Revised Conceptual Model

10.1.1 Revised Human Health Conceptual Model

'Hotspots' / localised exceedances of mercury, lead. **Identified Sources:**

coal tar PAHs and potential widespread coal tar PAHs in Area 1 in the Made Ground. 1 No. benzo(a)pyrene concentration in Area 1 was in the vicinity of quarry vehicle parking and a fuel tank

which likely represents its source.

'Hotspots' / localised exceedances of arsenic and coal tar PAHs in the Made Ground of Area 2.

Potential Pathways:

Dermal contact with soil and dust, ingestion of home grown produce and attached soil (residential areas only), inhalation of soil and dust, and the inhalation of indoor and outdoor vapours and ground gases. Potential combustion or explosion of ground gases in confined spaces.

Potential Receptors:

Future site users (residents, site workers, visitors, construction/maintenance workers and potential trespassers). Also site flora and fauna and future buildings/structures and construction materials (e.g. water supply pipes).

Potential Risks:

End users of the site and construction/maintenance workers are potentially at significant risk from the sources identified above and further testing and assessment is required. The PAHs represent a potential risk via the inhalation pathway.

10.1.2 Revised Controlled Waters Conceptual Model

Identified Sources:

Elevated TPHs, total PAHs and benzo(a)pyrene in

the groundwater in Area 2.

Localised lead, mercury and coal tar PAHs in the soils of Area 1. Potential widespread coal tar PAHs in

Area 1.

Localised arsenic and car tar PAHs in the soils of

Area 2.

Potential Pathways:

Infiltration of precipitation through the site's surface and leaching of potential contaminants and subsequent vertical migration to the aquifer or horizontal migration to the watercourse.

Potential Receptors:

Underlying groundwater in the Principal and Secondary A Aquifers; the fishing pond located within the main site, approximately 55m south east from Area2; and, approximately 500m north west of Area 1, the unnamed tributary stream which runs into the River Deben.

The 2 No. on site groundwater abstraction licences associated with the quarry are assumed to be terminated by the time of development. The surface water abstraction approximately 200m to the south of Area 2 is also potentially at risk.

Potential Risks:

Risks to the underlying Principal Aquifer are considered potentially significant particularly based on the levels of TPHs and PAHs recorded in the groundwater in Area 2. Further assessment is recommended in Section 10.9 to confirm any necessary remedial measures / DQRA.

10.2 Ground Gases

As previously mentioned, the site is in an area where between 1% and 3% of properties are above the radon action level. Therefore, based on current guidance radon protective measures are not required.

Due to the fact that the much of the site (a significant part of Area 1 and the whole of Area 2) lies either on or directly adjacent to a historical landfill and there are significant depths of Made Ground, it is considered that Area 1 should be categorised as 'Amber 2' in accordance with the NHBC traffic light system detailed in CIRIA C665, and as such special gas protection measures are deemed necessary.

In areas of the site where 'Amber 2' classification applies, the following gas protection measures are recommended for residential properties:

- Provision of a minimum 1200 gauge gas membrane for all buildings, with taped and lapped seams fitted by a specialist contractor.
- Above ground service entries were possible.
- Sealing of all floor slab penetrations.
- Passively ventilated sub floor void (minimum 150mm) to allow one complete volume change per 24 hours.
- Certification to confirm that gas protection measures have been installed correctly.

In addition, further monitoring and possible venting of Area 2 is recommended to reduce risks to the proposed development and off site receptors.

VOC membranes will be required in Area 1 where elevated PAHs remain beneath buildings.

10.3 Risks to Adjacent Land and Third Parties

The information available indicates that risks to adjacent land in particular from ground gases in Area 2, require further assessment.

10.4 Potential Geo-Environmental Liabilities

Potential geo-environmental liabilities under Pt2A of the Environmental Protection Act (1990) and the Groundwater Regulations (GWR) 2009, relating to the site in its current condition require further assessment.

10.5 Waste Classification

It is recommended that the chemical analysis undertaken to date are issued to a local waste treatment centre to confirm classification.

10.6 Remediation

10.6.1 Human Health Remedial Measures

Based on the information available the following remedial measures are anticipated to protect human health:

- Delineation and capping of the identified areas of contamination. (In view of the history of the site this may comprise the majority of both areas subject to the proposed end use of Area 2).
- Where capping is required, front gardens and landscape areas will require 300mm of capping, whilst rear gardens will require 600mm, subject to approval of the Local Authority and NHBC. The thickness and source of any capping materials should be independently verified by GEG. Site won material outside the identified areas of contamination could be used.
- Removal of any contaminated soils to facilitate placement of the capping layer should also be independently verified by GEG to ensure regulatory approval.
- VOC membranes where elevated PAHs remain beneath buildings.

10.6.2 Protection of Controlled Waters

Subject to further investigation and DQRA if required, based on the information available the following localised remedial measures are potentially required to controlled waters:

- Removal of any gross soil hydrocarbon contamination in the area of the tanks etc.
- Treatment of the localised TPH and PAH groundwater contamination utilising Enhanced Natural Attenuation including for example oxygen release compounds (ORC) and subsequent monitoring. Chemical oxidation is not considered suitable at this stage due to the levels of potentially explosive gases present. However, liaison with a specialist contractor is advised.
- Backfilling of excavations with approved inert verified material.
- Validation Reporting.

10.6.3 Unidentified Contamination

Should any unidentified contamination be encountered during development GEG should be contacted to undertake further assessment and determine the best course of action.

10.6.4 Budget Remedial Costings

Budget remedial costings will be confirmed following the recommended additional investigation.

10.7 Further Investigation

The following further work is recommended:

- Further detailed investigation is required around the quarry buildings and in particular in the vicinity of the assumed fuel tanks to determine whether any soil and groundwater hydrocarbon contamination and asbestos are present.
- Delineation of the identified 'hotspots' across both areas and further investigation of potential widespread coal tar PAHs in Area 1.
- Further gas and groundwater monitoring in Area 1 and Area 2.
- Detailed Quantitative Risk Assessment (DQRA) for groundwater (if required following the above).

11. REFERENCES

- 1. British Standard Institute (1990) BS: 1377 Parts 1-9. Methods of Tests for Soils for Civil Engineering Purposes.
- 2. British Standard Institute (2015) BS: 5930 Code of Practice for Site Investigations. BSI, London.
- 3. British Standard Institute (2001) BS: 10175 Code of Practice for Investigation of Potentially Contaminated Sites. BSI, London.
- 4. BRE Report 414 (2001). Protective measures for housing on gas-contaminated land. BRE Press, Berkshire.
- 5. BRE Digest 412 (February 1996). Desiccation in clay soils.
- 6. CIRIA Publication C665 (2007): Assessing risks posed by hazardous ground gases to buildings.
- 7. CIEH and CL:AIRE (May 2008). Comparing Soil Concentration Data with a Critical Concentration.
- 8. Culp, S., Gaylor, D., Sheldon, W., Goldstein, L. and Beland, F. (1998) A comparison of the tumours induced by coal tar and benzo(a)pyrene in a 2-year bioassay. *Carcinogenesis*, 19 (1) 117-124
- 9. DEFRA (July 2008). Guidance on the Legal Definition of Contaminated Land.
- 10. DEFRA (2002b) Model Procedures for the Management of Contaminated Land, Report CLR 11.

- 11. DEFRA. SP1010: (December 2014) Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination Policy Companion Document.
- 12. Driscoll (1983) The Influence of Vegetation on the Swelling and Shrinking of Soils in Britain. Geotechnique Vol. 33 No.2.
- 13. Environment Agency. Environmental Quality Standards.
- 14. Environment Agency 2009. Human health toxicological assessment of contaminants in soil (Science Report Final SC050021/SR2).
- 15. Environment Agency 2009. *Updated technical background to the CLEA model* (Science Report Final SC050021/SR3).
- 16. Environment Agency, 2009. Science Reports SC050021: arsenic SGV, nickel SGV, mercury SGV, selenium SGV, cadmium SGV, benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, dioxins, furans and dioxin-like PCBs SGV and phenol SGV.
- 17. Environment Agency, 2009. Science Reports SC050021 Supplementary Information for the derivation of arsenic SGV, nickel SGV, mercury SGV, selenium SGV, cadmium SGV, benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, dioxins, furans and dioxin-like PCBs SGV and phenol SGV.
- 18. Environment Agency, Scottish Environment Protection Agency, Environment and Heritage Centre, Technical Guidance WM2. Interpretation of the definition and classification of hazardous waste.
- 19. Geological Society Engineering Group Working Party Report, 1970. The logging of rock cores for engineering purposes. Quarterly Journal of Engineering Geology 3, 1-24 (24 pages).
- 20. HPA (2010). Risk Assessment Approaches for Polycyclic Aromatic Hydrocarbons (PAHs). Didcot, UK: Health Protection Agency.
- 21. ICE Publishing (2012) UK Specification for Ground Investigation Second Edition. Site Investigation Steering Group.
- 22. NHBC Standards Chapter 4.2. (2011). Building Near Trees.
- 23. Scotland and Northern Ireland Forum for Environment Research (2003) Method for Deriving Site-Specific Human Health Assessment Criteria for Contaminants in Soil.
- 24. Stroud, M.A. (1974). The Standard Penetration Test in Insensitive Clays and Soft Rocks. Proceedings of the European Symposium on Penetration Testing, Stockholm, Vol. 2.2 pp 367-375.
- 25. Stroud, M.A. and Butler, FG, (1975). The Standard Penetration Test and the Engineering Properties of Glacial Materials. Proceedings of the Symposium

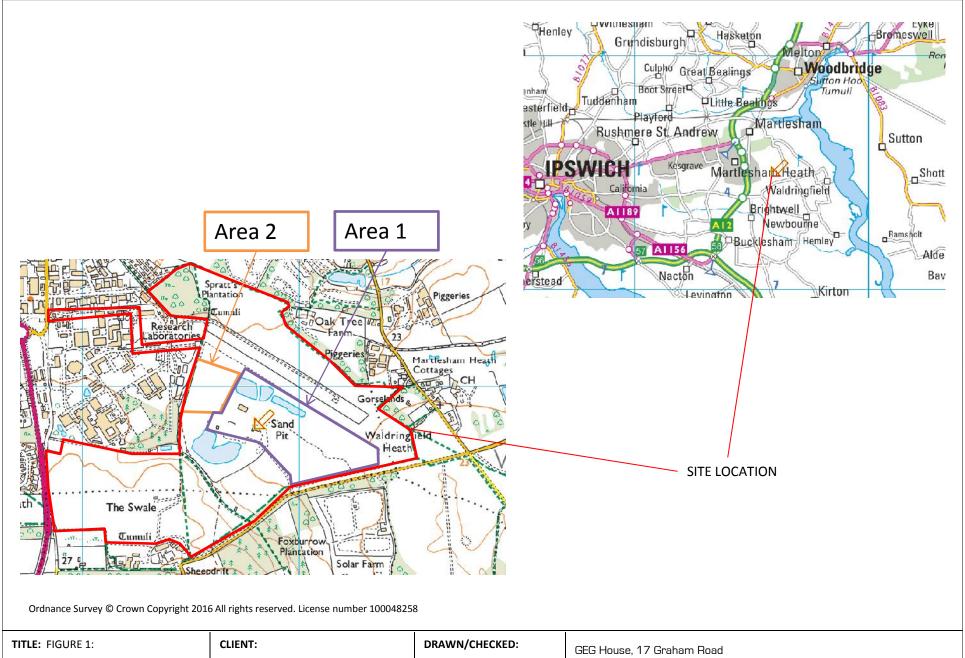
on the Engineering Behaviour of Glacial Materials, University of Birmingham.

26. Total Petroleum Hydrocarbon Criteria Working Group Series (1998) Volume 5. Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach.

12. LIMITATIONS

As with all intrusive site investigations, there is a possibility that localised contamination 'hot spots'/geotechnical features remain undetected on the site. Therefore, as with standard practices, this report does not provide a warranty to cover limited localised contamination 'hot spots'/geotechnical features or any post-investigation importation of contamination.

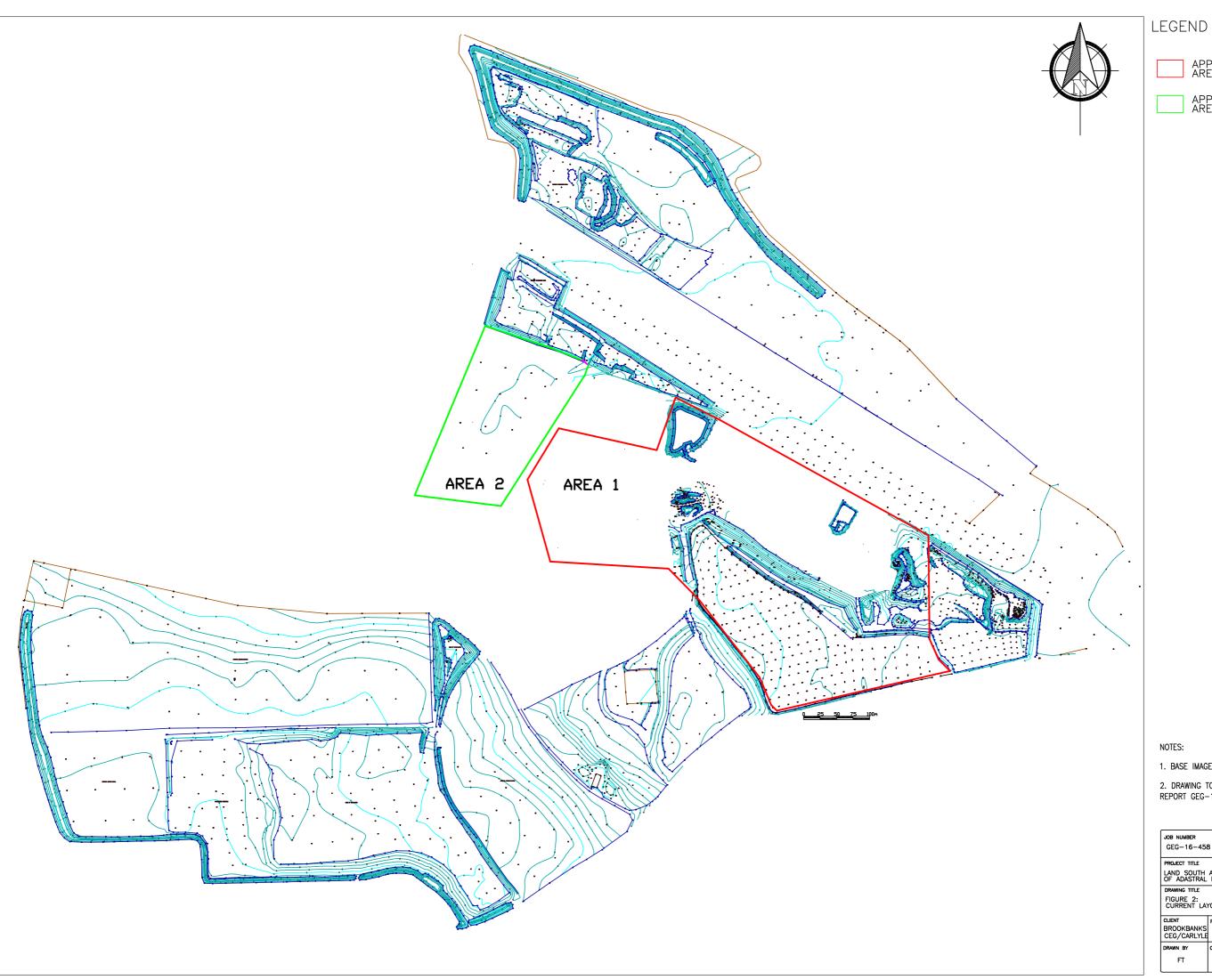
The conclusions and recommendations stated herein are based on information available at the time of production. These may not necessarily apply if the site is to be utilised for a more or less sensitive purpose in the future, or if operational procedures or management alter over time.


GEG maintain intellectual copyright of the contents of this report and grant exclusive use of the material contained herein to the client, the client's agents, the client's respective sub-contractors and the specific local authority. No unauthorised distribution shall be made to any third parties without the prior consent of both GEG Ltd and the Client.

GEG shall not be liable by reason of any representation (unless fraudulent), or any implied warranty, condition or other term, or any duty at common law for any loss of profit or any indirect, special or consequential loss, damage, costs, expenses or other claims (whether caused by the negligence of the Supplier, its servants, subcontractors or agents or otherwise) which arise out of or in connection with the provision of the Specified Service or their use by the Client.

APPENDIX A

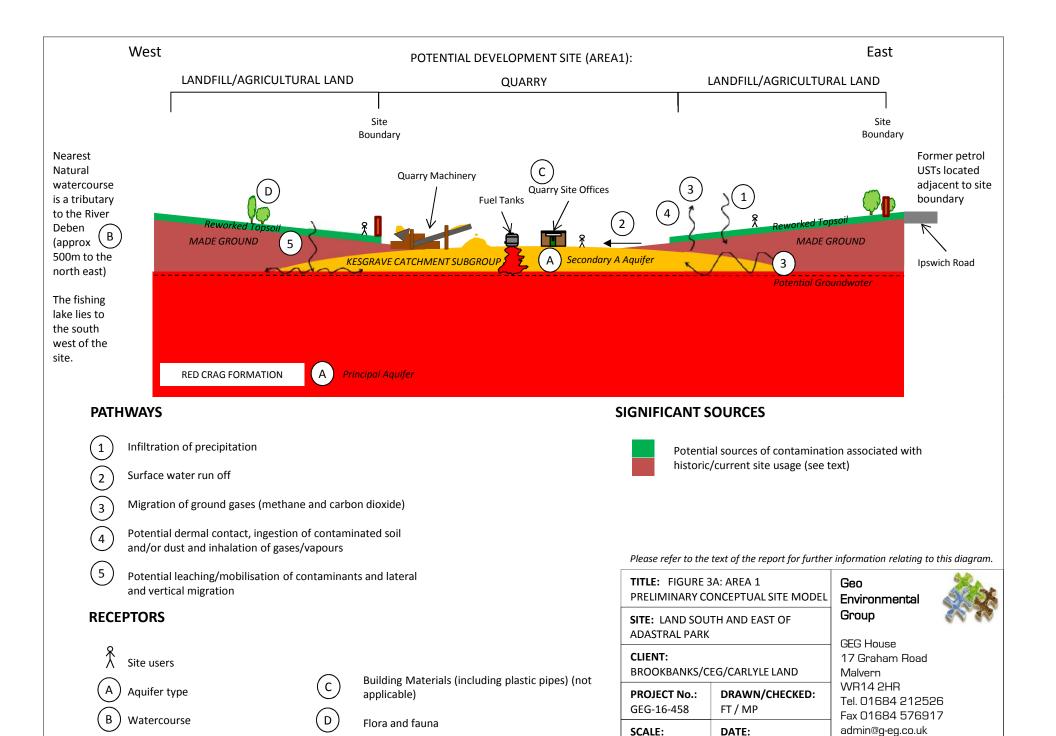
FIGURES AND PLANS



TITLE: FIGURE 1:	CLIENT:		DRAWN/CHECKED:	
SITE LOCATION PLAN	BROOKBANKS/CEG/CARLYLE LAND		FT/ MP	
SITE:	PROJECT No.:	SCALE:	DATE:	REVISION:
ADASTRAL PARK, IPSWICH	GEG-16-458	NTS	20/10/16	А

Malvern, WR14 2HR
Tel. 01684 212526
Fax 01684 576917
admin@g-eg.co.uk, www.g-eg.co.uk

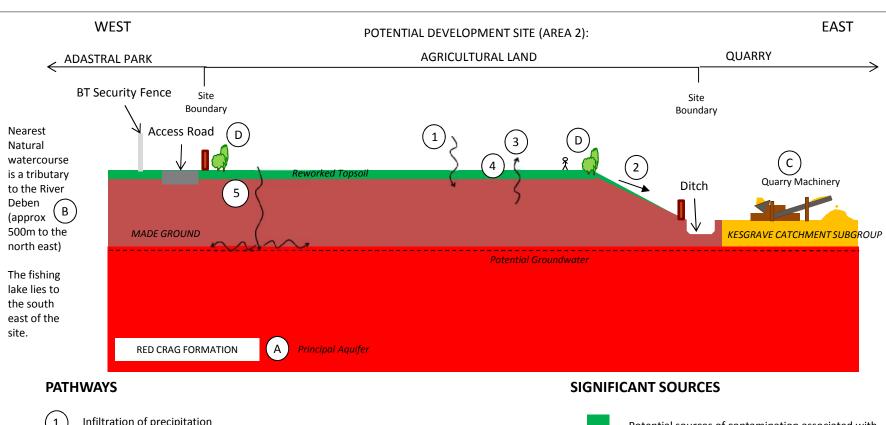
Geo Environmental Group



APPROXIMATE BOUNDARY AREA 1

APPROXIMATE BOUNDARY AREA 2

- 1. BASE IMAGE PROVIDED BY BROOKBANKS CONSULTING.
- 2. DRAWING TO BE USED IN CONJUCTION WITH GEG REPORT GEG-16-458/PII.


JOB NUMBER GEG-16-458	3		9	SES	
PROJECT TITLE LAND SOUTH	AND FAST		C	eo Environmental	C
OF ADASTRAL			GE	eo Environmental	Group
DRAWING TITLE				DRAWING NO.	
FIGURE 2: CURRENT LAY	OUT PLAN			GEG-16-4	158_003
CLIENT	REVISION NO.	ORIGINAL SIZE		DIMENSIONS	SCALE
BROOKBANKS CEG/CARLYLE	Α	A3		METRES	AS SHOWN
DRAWN BY	CHECKED BY	APPROVED BY		ISSUE	DATE
FT	MP	MR		FINAL ISSUE	21/10/16

NTS

20/10/16

www.g-eg.co.uk

- Infiltration of precipitation
- Surface water run off
- Migration of ground gases (methane and carbon dioxide)
- Potential dermal contact, ingestion of contaminated soil and/or dust and inhalation of gases/vapours
- (5 Potential leaching/mobilisation of contaminants and lateral and vertical migration

RECEPTORS

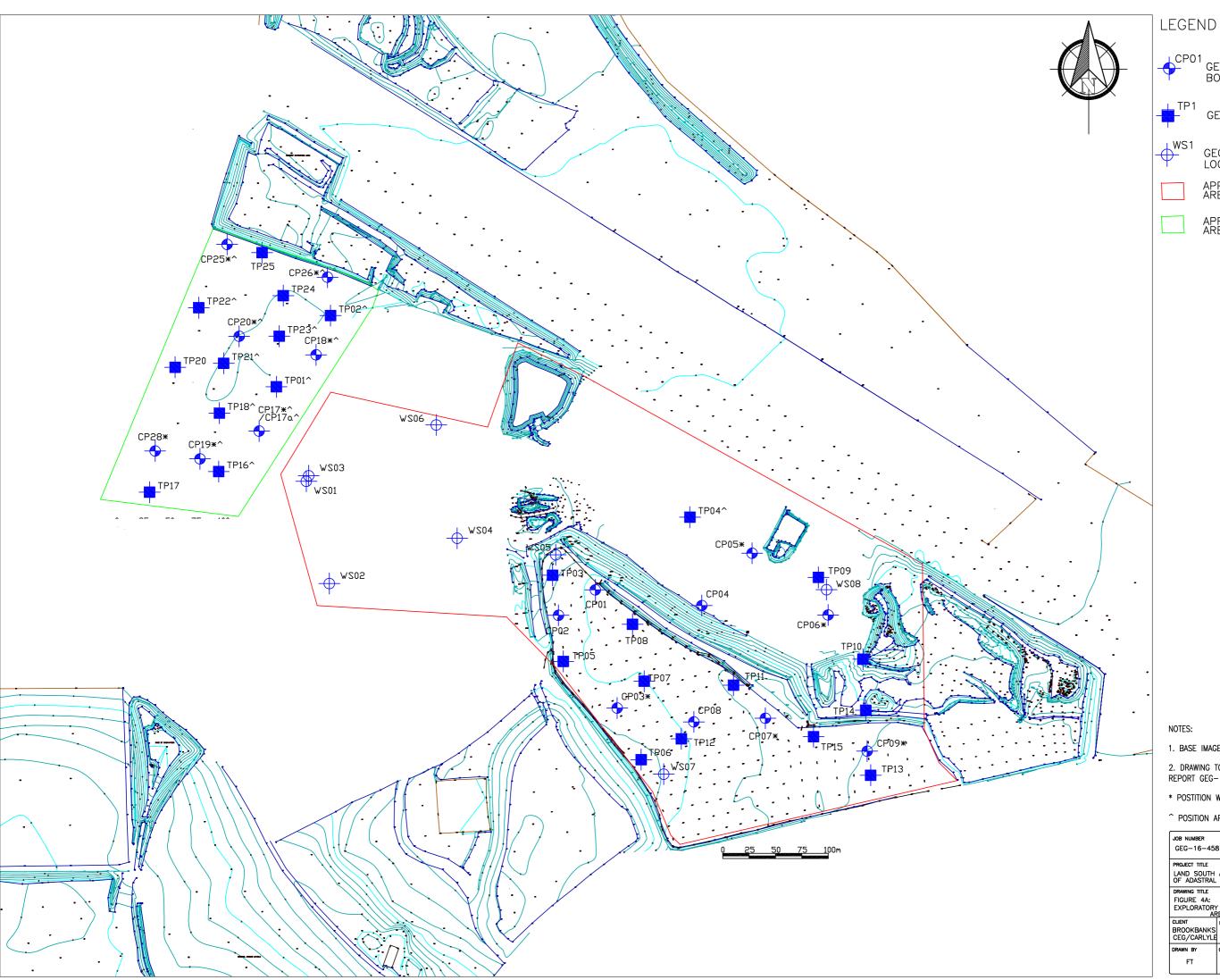
Site users

- - Aquifer type
- Watercourse

Building Materials (including plastic pipes) (not applicable)

Flora and fauna

Potential sources of contamination associated with historic/current site usage (see text)


Please refer to the text of the report for further information relating to this diagram.

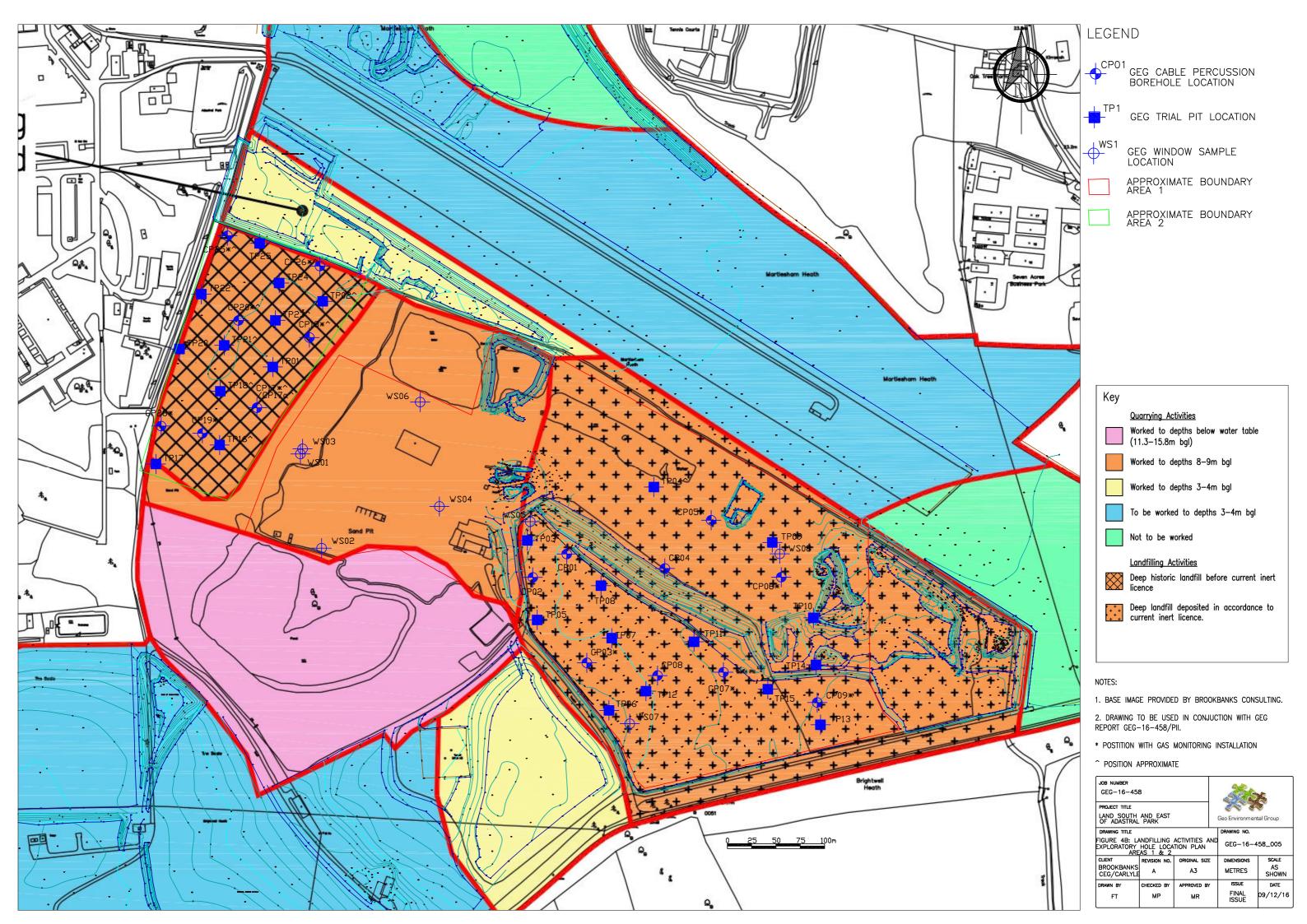
TITLE: FIGURE 3B: AREA 2 PRELIMINARY CONCEPTUAL SITE MODEL				
SITE: LAND SOUTH AND EAST OF ADASTRAL PARK				
CLIENT: BROOKBANKS/CEG/CARLYLE LAND				
PROJECT No.: DRAWN/CHECKED: GEG-16-458 FT / MP				
SCALE: DATE: NTS 18/111/16				

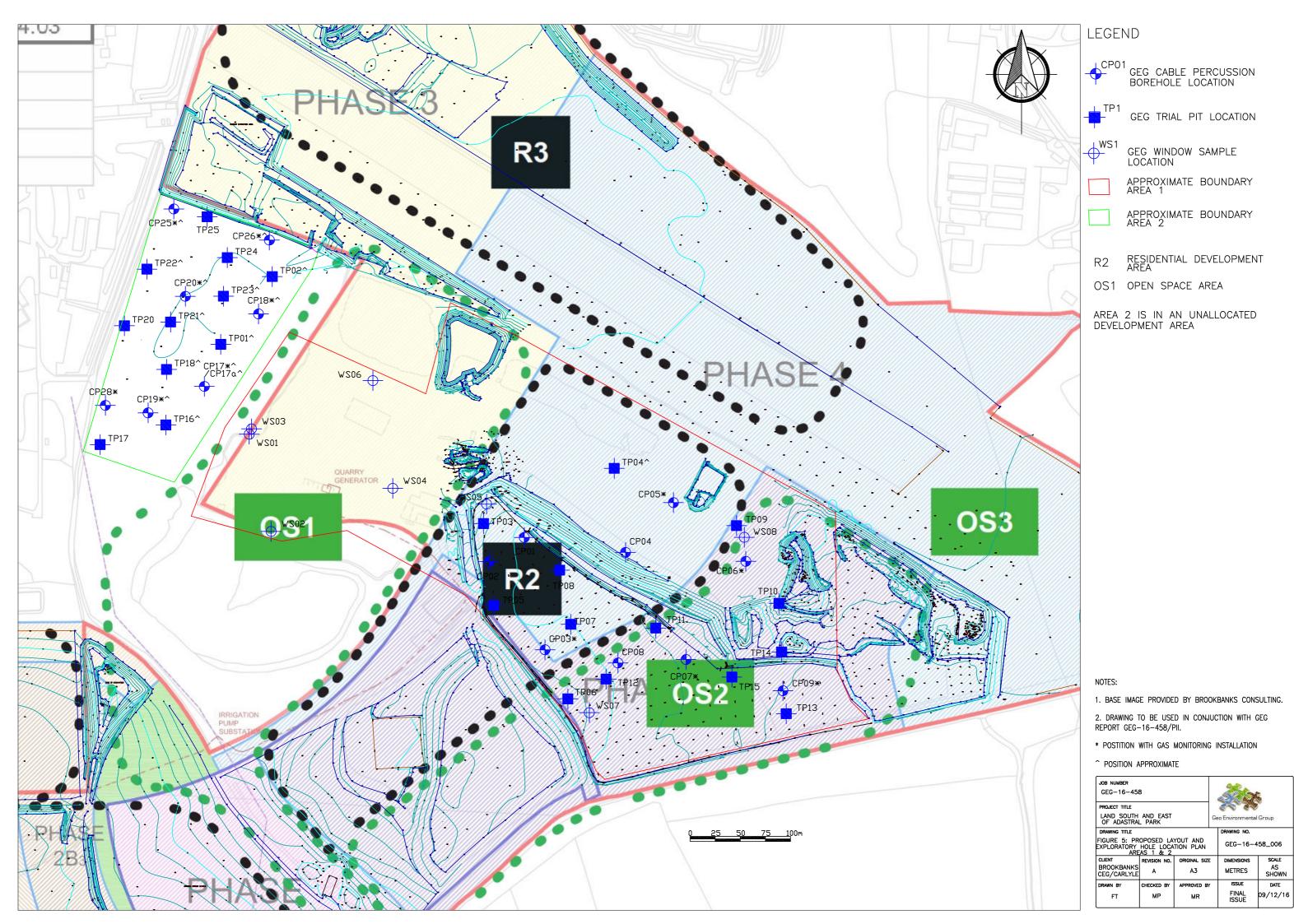
Geo **Environmental** Group

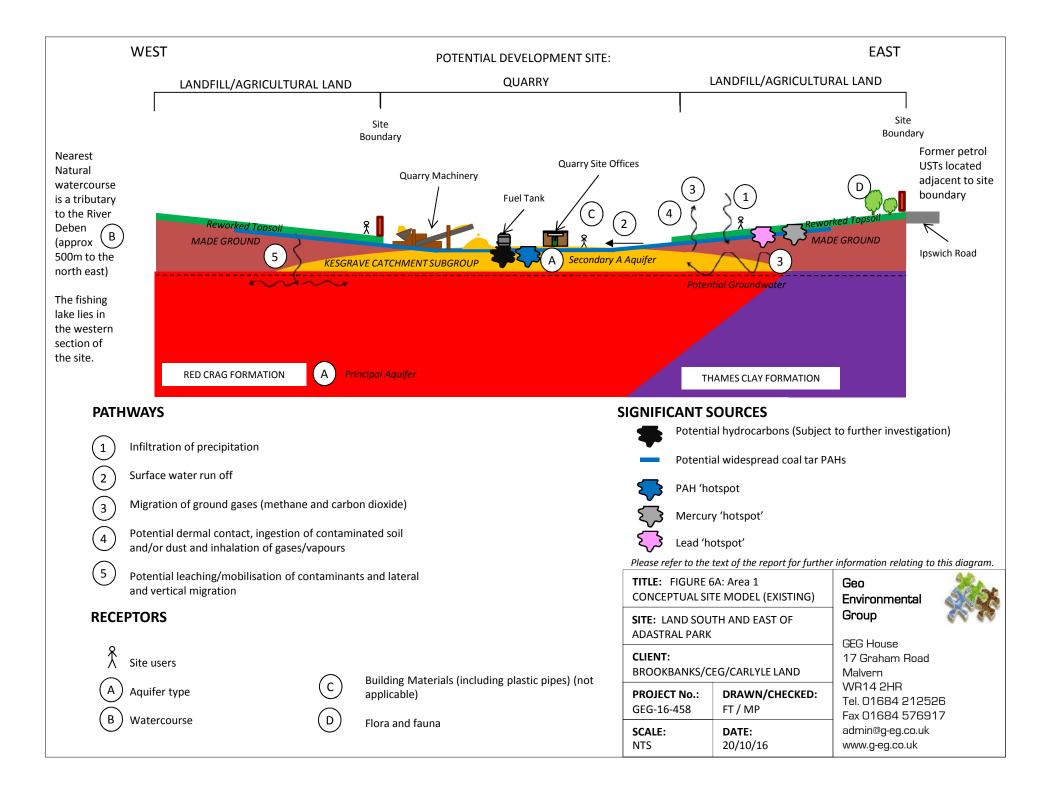
GEG House 17 Graham Road Malvern WR142HR Tel. 01684 212526 Fax 01684 576917 admin@g-eg.co.uk www.g-eg.co.uk

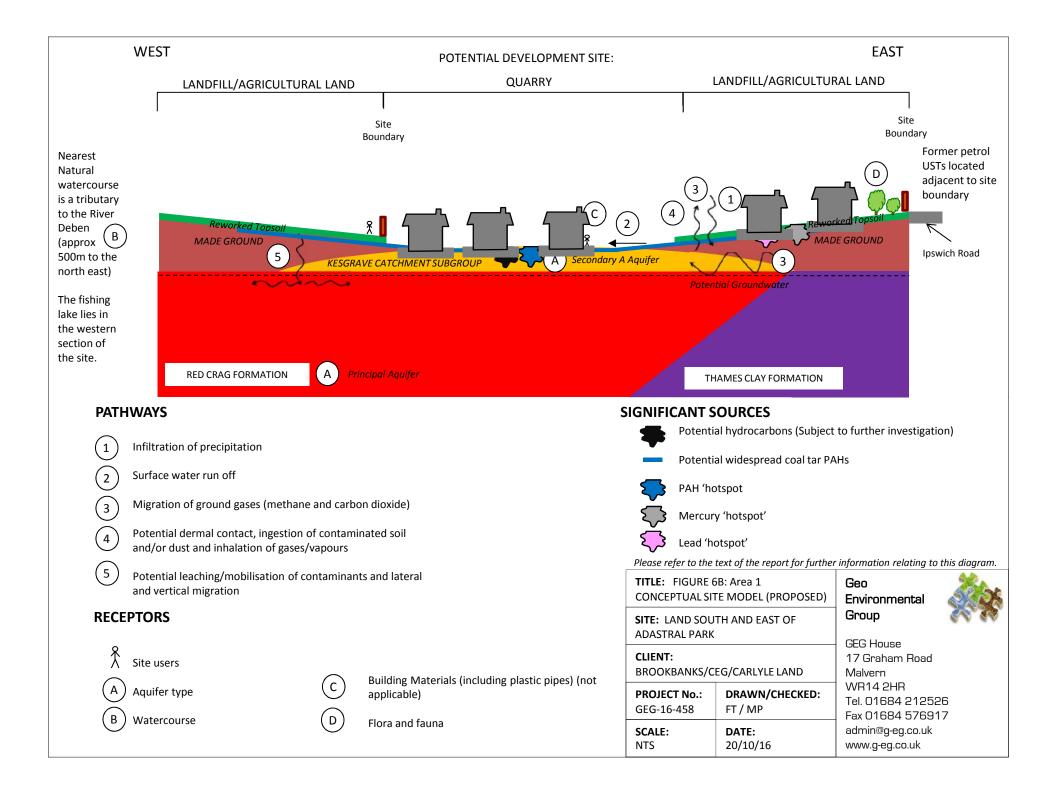
GEG CABLE PERCUSSION BOREHOLE LOCATION

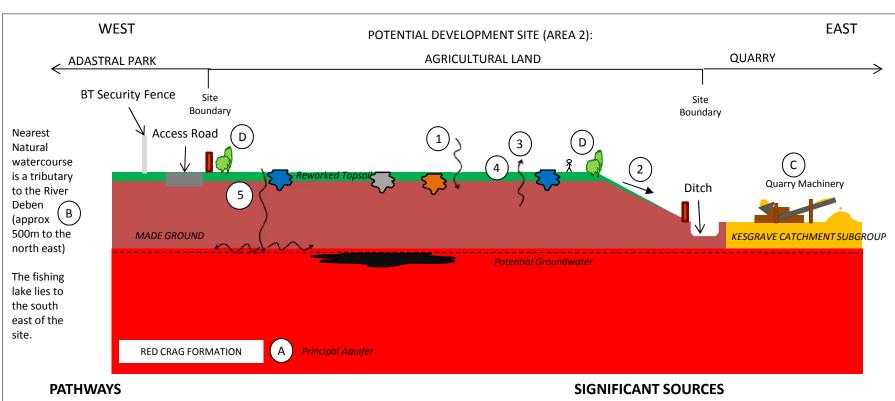
GEG TRIAL PIT LOCATION


GEG WINDOW SAMPLE LOCATION


APPROXIMATE BOUNDARY AREA 1


APPROXIMATE BOUNDARY AREA 2


- 1. BASE IMAGE PROVIDED BY BROOKBANKS CONSULTING.
- 2. DRAWING TO BE USED IN CONJUCTION WITH GEG REPORT GEG-16-458/PII.
- * POSTITION WITH GAS MONITORING INSTALLATION
- ^ POSITION APPROXIMATE


JOB NUMBER GEG-16-458			3	385	
PROJECT TITLE LAND SOUTH AND EAST OF ADASTRAL PARK			Ge	Geo Environmental Group	
DRAWING TITLE FIGURE 4A: EXPLORATORY HOLE LOCATION PLAN AREAS 1 & 2			ı	DRAWING NO. GEG-16-458_004a	
CLIENT BROOKBANKS CEG/CARLYLE	REVISION NO.	ORIGINAL SIZI	E	DIMENSIONS METRES	SCALE AS SHOWN
DRAWN BY	MP	APPROVED BY	r	ISSUE FINAL ISSUE	DATE 01/12/16

- $\begin{pmatrix} 1 \end{pmatrix}$ Infiltration of precipitation
- 2 Surface water run off
- (3) Migration of ground gases (methane and carbon dioxide)
- Potential dermal contact, ingestion of contaminated soil and/or dust and inhalation of gases/vapours
- Potential leaching/mobilisation of contaminants and lateral and vertical migration

RECEPTORS

Site users

(A) Aq

Aquifer type

(B) w

Watercourse

(c)

Building Materials (including plastic pipes) (not applicable)

(D)

Flora and fauna

Mercury 'hotspot'

TPH 'hotspot

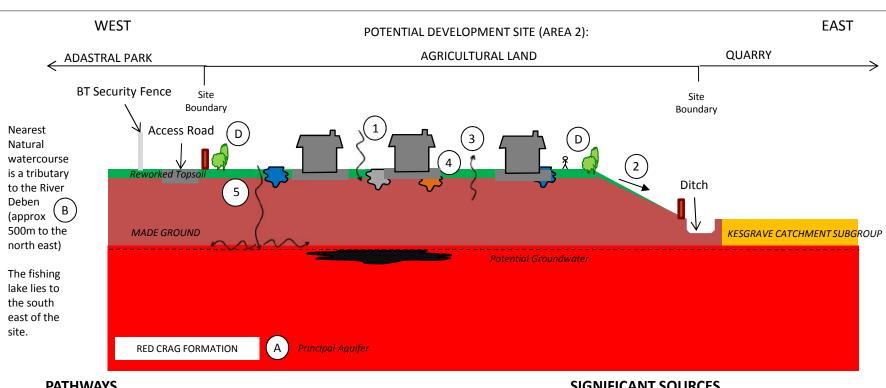
Arsenic 'hotspot'

NTS

► TPH and PAH groundwater contamination

Please refer to the text of the report for further information relating to this diagram.

SCALE:	DATE:								
PROJECT No.: DRAWN/CHECKED: GEG-16-458 FT / MP									
CLIENT: BROOKBANKS/C	EG/CARLYLE LAND								
SITE: LAND SOU ADASTRAL PARK	SITE: LAND SOUTH AND EAST OF ADASTRAL PARK								
TITLE: FIGURE 7A: AREA 2 CONCEPTUAL SITE MODEL (EXISTING)									
Please refer to the text of the report for furth									


29/11/16

Geo Environmental Group

GEG House 17 Graham Road Malvern WR14 2HR Tel. 01684 212526 Fax 01684 576917 admin@g-eg.co.uk

www.g-eg.co.uk

PATHWAYS

- Infiltration of precipitation
- Surface water run off
- Migration of ground gases (methane and carbon dioxide) 3
- Potential dermal contact, ingestion of contaminated soil and/or dust and inhalation of gases/vapours
- (5 Potential leaching/mobilisation of contaminants and lateral and vertical migration

RECEPTORS

Site users

- Aquifer type
- Watercourse

Building Materials (including plastic pipes) (not applicable)

Flora and fauna

SIGNIFICANT SOURCES

Mercury 'hotspot'

TPH 'hotspot

Arsenic 'hotspot'

NTS

► TPH and PAH groundwater contamination

her information relating to this diagram.

SCALE:	DATE:								
GEG-16-458 FT / MP									
PROJECT No.:	DRAWN/CHECKED:								
CLIENT: BROOKBANKS/C	EG/CARLYLE LAND								
SITE: LAND SOUTH AND EAST OF ADASTRAL PARK									
TITLE: FIGURE 7B: AREA 2 CONCEPTUAL SITE MODEL (EXISTING)									
Please refer to the text of the report for furth									

29/11/16

Geo **Environmental** Group

GEG House 17 Graham Road Malvern WR142HR Tel. 01684 212526 Fax 01684 576917 admin@g-eg.co.uk www.g-eg.co.uk

APPENDIX B

PHOTOGRAPHIC RECORD

Photo 1: View north of site office in the foreground, weighbridge in the middle ground, and concrete plant in the back ground. (Area 1)

Photo 2: View north west of large building. (Area 1)

Photo 4: View north west of machine parking area behind the warehouse. (Area 1)

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 3: View north of fuel tank in the area behind the large building. (Area 1)

Photo 5: View north west of site office and weighbridge. (Area 1)

Photo 6: View south east of haul road to south eastern section of Area 1.

Photo 7: View of access route into eastern area of Area 1, with water pump in the foreground.

Photo 8: View of lakes and pump piping along the north eastern boundary of Area 1.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 9: View north east of scrap metal container in the eastern section of Area 1.

Photo 10: View south east of eastern section of Area 1.

Photo 12: View of access into southern section of Area 1.

Geo Environmental Group GEG House 17 Graham Road Malvern WR14 2HR

Client: Brookbanks/CEG/ Carlyle Land

Project: Land south and east of Adastral Park

Photo 11: View of access into southern section of Area 1.

Photo 13: View east of southern section of Area 1.

Photo 14: View west of southern section of Area 1.

Photo 15: View north across southern section of Area 1, with the BT facility in Adastral park in the background.

Photo 16: View east of access out of eastern section of the site.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 17: View north of mineral washing plant in the central section of Area 1.

Photo 18: View south of bagging area for Brett Aggregates in northern central section of Area 1.

Photo 19: View of mineral storage heaps in central section of Area 1.

Photo 20: View of concrete mixing plant on the north western corner of Area 1.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 21: View north west from southern section of Area

Photo 22: View north from southern section of Area 1.

Photo 23: View of southern boundary of Area 1.

Photo 24: View west of southern section of Area 1.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 25: View north west of access into Area 2.

Photo 26: View south of Area 2.

Photo 27: View of south west corner of Area 2, with the adjacent concrete mixing plant in Area 1 in the background.

Photo 28: View along western boundary of Area 2.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 29: View north of Area 2.

Photo 30: View of north eastern corner of Area 2.

Photo 32: Updated view north of eastern section of Area 1, after spoil had been removed (WS08 now destroyed).

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Project No.: GEG-16-458

Photo 31: Updated view north of new access into southern section of Area 1.

Photo 33: Excavation of trial pit TP01.

Photo 34: Arisings from trial pit TP01.

Photo 35: Excavation of trial pit TP02.

Photo 36: Arisings from trial pit TP02.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 37: Excavation of trial pit TP03.

Photo 39: Excavation of trial pit TP04.

Photo 38: Arisings from trial pit TP03.

Photo 40: Arisings from trial pit TP04.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 41: Excavation of trial pit TP05.

Photo 43: Excavation of trial pit TP06.

Photo 42: Arisings from trial pit TP05.

Photo 44: Arisings from trial pit TP06.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 45: Excavation of trial pit TP07.

Photo 47: Excavation of trial pit TP08.

Photo 46: Arisings from trial pit TP07.

Photo 48: Arisings from trial pit TP08.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 49: Excavation of trial pit TP09.

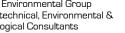

Photo 51: Excavation of trial pit TP10.

Photo 50: Arisings from trial pit TP09.

Photo 52: Arisings from trial pit TP10.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 53: Excavation of trial pit TP11.

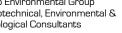

Photo 55: Excavation of trial pit TP12.

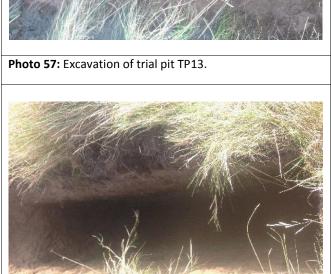
Photo 54: Arisings from trial pit TP11.

Photo 56: Arisings from trial pit TP12.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**



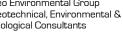

Photo 59: Excavation of trial pit TP14.

Photo 58: Arisings from trial pit TP13.

Photo 60: Arisings from trial pit TP14.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 61: Excavation of trial pit TP15.

Photo 63: Excavation of trial pit TP16.

Photo 62: Arisings from trial pit TP15.

Photo 64: Arisings from trial pit TP16.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 65: Excavation of trial pit TP17.

Photo 67: Excavation of trial pit TP18.

Photo 66: Arisings from trial pit TP17.

Photo 68: Arisings from trial pit TP18.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 69: Excavation of trial pit TP20.

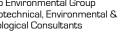

Photo 70: Arisings from trial pit TP20.

Photo 71: Excavation of trial pit TP21.

Photo 72: Arisings from trial pit TP21.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 75: Excavation of trial pit TP23.

Photo 76: Arisings from trial pit TP23.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

Photo 77: Excavation of trial pit TP24.

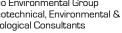

Photo 79: Excavation of trial pit TP25.

Photo 78: Arisings from trial pit TP24.

Photo 80: Arisings from trial pit TP25.

Geo Environmental Group GEG House 17 Graham Road Malvern **WR14 2HR**

Client: Brookbanks/CEG/ **Carlyle Land**

Project: Land south and east of **Adastral Park**

APPENDIX C

EXPLORATORY HOLE LOGS

AREA 1

Project				BOREHOLE No
Adastral Park, I	CD04			
Job No	Date 04-10-16	Ground Level (m)	Co-Ordinates ()	─ CP01
GEG-16-458	04-10-16		E 625,900.6 N 244,783.4	
Contractor				Sheet
				1 of 2

SAMPL	ES&T	ESTS	₩				STRA	TA					/tra
Depth	Type No	Test Result	Meduc Leve		Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
0.10 0.30	D D				- - (0.50) - 0.50	occasional			slightly da	yey mediur	m SAND with		
					- - - - - - - (1.50)	MADE GF	ROUND - D	Oark brown	slightly cla	yey mediur	m SAND.		
1.50 1.50	D	N4			2.00	1.50 - 2.00) Becoming	very loose t	to loose				
2.00	D					MADE GR occasional brick and o		Brown claye ad pockets o	y gravelly i f clay. Gra	medium SA velismedio	AND with um fragments of		
3.00 3.00	D	N16			(2.00)	3.00 - 4.00) Becoming	medium de	nse				
4.00	D				4.00	MADE GF CLAY. Gr	ROUND - L avel is med	.oose to me ium fragme	dium dense nts of brick	brown san	dy gravelly ete.		
4.50		N10			- (1.00) - - 5.00								
5.00 5.40	D				(0.40) 5.40	with occas fragments	ional cobble of brick and	e-sized pock I concrete.	ets of clay.	ravelly me Gravel is i	dium SAND medium		
6.00		N16			- - -(1.20)	MADE GF medium fr	Decoming ROUND - Gagments of Decoming	Freyish brov brick and co	vn medium oncrete.	gravelly S	AND. Gravelis		
6.50 6.60	D D				6.60 - - - - (0.80)	MADE GF	ROUND - (I	Firm) greyis	sh brown sa	andy CLAY	' .		
7.40 7.50	D	N22			7.40 - - - -	SAND. Gr	ROUND - C avel is med Decoming	ium fragme	nts of brick	dayey slig	ghtly gravelly		
Bori	ng Prog	ress and	Water O	bservatio			Chisellin	g	Water	Added	GENE		
Date	Time	Depth	Cas Depth	ing Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	,
					·						No groundwencountered. 2. backfilled upon completeion.	Hole	
All dimens	sions in m	etres C	lient Bro	okbanks/	CEG	Meth	nod/				Logged By		

Project	BOREHOLE No			
Adastral Park, I	CP01			
Job No	Date 04-10-16	Ground Level (m)	Co-Ordinates ()	CPUI
GEG-16-458	04-10-16		E 625,900.6 N 244,783.4	
Contractor				Sheet
				2 of 2

Contractor			Sheet
			2 of 2
SAMPLES & TESTS	T	STRATA	ent/
Depth Type Test No Result	Reduced Legend (Thickness)		Geology Instrument/ Backfill
8.50 D	(1.60)	MADE GROUND - Orangish brown slightly clayey slightly SAND. Gravel is medium fragments of brick. (continued)	gravelly
9.00 N10/	9.00	Weak light brown SANDSTONE.	
- 9.20 D Omm	9.30	(RED CRAG FORMATION)	
Boring Progress and	Water Observations	Chiselling Water Added	GENERAL
Date Time Depth	Casing Water Depth Dia.mm Dpt	From To Hours From To	REMARKS
		9.1 9.3 0.5hr 1 e b c c	. No groundwater ncountered. 2. Hole ackfilled upon ompleteion.

AGS3 UK BH GEG-16-458 ADASTRAL PARK, IPSWICH.GPJ GINT STD AGS 3_1.GDT 12/12/16

All dimensions in metres Scale 1:50 Client Brookbanks / CEG Method/ Plant Used Cable Percussion Rig Logged By

Project	BOREHOLE No			
Adastral Park, I	CP02			
Job No	Date 03-10-16	Ground Level (m)	Co-Ordinates ()	CP02
GEG-16-458	03-10-16		E 625,866.2 N 244,759.3	
Contractor				Sheet
				1 of 2

										1 of 2			
SAMPL	ES&T	ESTS	-				STRA	TA					ent/
Depth	Type No	Test Result		duced evel Leger	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/ Backfill
0.10	D				(0.40) 0.40	occasional	ROUND - D rootlets. KED TOPS		slightly day	ey medium/	SAND with		
- 0.40	D					MADE GF numerous	ROUND - (Greyish brown	wn clayey S sandy grav	SAND & GR relly day. G	RAVEL with Gravel is		
1.50 1.50	D	N13				1.50 - 3.00	Becoming	medium de	nse				
2.50	D	N5			_(5.10)	3.00 - 5.50 soft) clay	Becoming	loose with	occasional p	oockets of (v	very soft to		
3.50	D					sort) day							
4.50 4.50	D	N9				4.50 - 5.50 brick) With occas	sional cobbb	ole-sized fra	agments of c	concrete and		
5.50 - 6.00	D	N26			(0.80)	MADE GF medium su	ROUND - M lb-rounded f		se SAND 8	GRAVEL	. Gravel is		
6.50	D				6.30	MADE GROUND - Medium dense dark brown slightly clayey SAND & GRAVEL with numerous cobble-sized fragments of brick and concrete, and cobble-sized pockets of clay. Gravel is medium sub-rounded flint and fragments of brick and concrete.							
7.50 7.50	D	N19			(2.50)								
Во	ring Prog	jress and		Observat			Chisellino	9	Water	Added	GENI		
Date	Time	Depth	Depth	Casing 1 Dia.mr	n Water Dpt	From	То	Hours	From	То	REMA		5
											1. No groundy	vater	

WICH.GPJ GINT STD AGS 3_1.GDT 12/12/16	- 6.50 - 7.50	D	N26 N19			6.30	MADE GR & GRAVE concrete, a sub-rounde	ROUND - M L with num nd cobble-s	/ledium den: nerous cobbl ized pocket:	le-sized fraq s of clay. G	gments of br ravel is med	dayey SAND ick and dium	
PARK, IPS\	Bo Date	oring Proo	gress and Depth		bservationsing Dia.mm	Water	From	Chisellino To	Hours	Water From	Added To	GENE REMA	
BH GEG-16-458 ADASTRAL	Date	Tille	Бфііі	Depth	Día. mm	<u>Dpt</u>	Tidii	10	Hours	HOIII	10	No groundwa encountered. 2. backfilled upon completeion.	ater Hole
AGS3 UK		ensions in m Scale 1:50	etres Cl	ient Bro	ookbanks /	CEG	Meth Plant		able Perc	ussion Ri	g	Logged By FT	

Project	BOREHOLE No			
Adastral Park, I	CP02			
Job No	Date 03-10-16	Ground Level (m)	Co-Ordinates ()	CP02
GEG-16-458	03-10-16		E 625,866.2 N 244,759.3	
Contractor				Sheet
				2 of 2

0445	FO 0 T	FOTO						OTDA	T A				of 2	T ₂
SAMPL Depth	Туре	Test	Water	Reduced		Depth		STRA		DIDTION			Geology	notri mont/
	No	Result	^	Level	Legend	ness)	MADE GF & GRAVE concrete, a	ROUND - M L with num nd cobble-si	ledium den	RIPTION se dark brow le-sized frag s of clay. G f brick and o	vn slightly o gments of bri ravel is med concrete. (co	layey SAND ick and ium ontinued)	95	- Luck
8.50	D					8.80								
8.80 9.00	D	N10/ 0mm			_ 	9.00	∖shall fragm √(WEATHE	ents and oc RED RED	casional wh CRAG FO	nole shells. RMATION)	with numerous hells and shell		
9.50	D					- - - - -	fragments.	AG FORMA		witindina	ous whole s	i e i saiu siei		
10.50 10.50	D	N50/ 158mm				-	10.50 - 15.	45 Becomir	ng extremel	y weak				
11.50	D					- - - -	11.50 - 15.	45 Becomir	ng coarse					
12.00		N50/ 136mm				- - - (6.45)								
12.50	D					- - - - - -								
13.50 13.50	D	N50				- - - - - - -								
14.50 15.00	D	N50/				- - - - -								
.5.50		178mm				15.45								
Bori	ing Prog	iress and	l Wa	ater Obs	servatio	- ns		Chisellino		Water	Added	GENE	RΔI	<u>_</u>
Date	Time	Depth		Casin epth E		Water Dpt	From	То	Hours	From	То	REMA	RKS	;
												No groundwa encountered. 2. backfilled upon completeion.	Hole	
All dimens	sions in m	etres C	lient	Brook	kbanks/	CEG	Meth	nod/				Logged By		_

Project				BOREHOLE No
Adastral Park,	CDO2			
Job No	Date 30-09-16	Ground Level (m)	Co-Ordinates ()	CP03
GEG-16-458	30-09-16		E 625,921.8 N 244,670.9	
Contractor		•		Sheet
				1 of 2

SAMPL	ES&T	ESTS	_				STRA	TA					ant/
Depth	Type No	Test Result	M Keduc Leve	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
0.10	D				0.30	MADE GF (REWORK			um SAND	with occasi	onal rootlets.		Ļ
0.30	D				-	MADE GF medium fra	ROUND - (Grey brown	SAND & (ete and var	GRAVEL. ious litholo	Gravelis gies.		
1.00	D				(1.40)	1.00 - 1.70	With occas	sional cobbl	e-sized fraç	gments			
1.50		N11			1.70	MADE OF	OLIND A	1 a dia al a.a		·~· CAND	9 CDAVEL		<u>.</u>
2.50	D				(1.80)	with occasi fragments of	ional cobble of brick, co	sized pock ncrete and v	ets of clay. various litho	Gravel is r	& GRAVEL nedium		
3.00		N16			2.50								
3.50	D				(0.80)	MADE GF fragments o					elis medium		
4.30	D				4.30	MADE GF		irm ara / aa	ndu araudi	v CLAV C	raid is		-
4.50		N10			(2.00)	medium va 4.50 - 6.30 concrete.	rious litholo	ogies.		-			
5.50	D				\$ \$ \$ \$								
6.00		N5			6.30	6.00 - 6.30							<u> </u> ::
6.30	D				(1.70)	MADE GF fragments o	ROUND - S of brick, co	oft grey sar ncrete and s	ndy gravelly sub-rounded	≀CLAY. G Iflint.	ravel is medium		
7.50 7.50	D	N6			8.00								
Bor	ing Prog	ress and	Water C				Chisellin	9	Water	Added	GENE		
Date	Time	Depth	Depth	sing Dia.mm	Water Dpt	From	То	Hours	From	То	1. No groundw encountered. 2 standpipe insta	ater . 50mn	 1
											responce zone bentonite seal cover 0.2-0m.	10-1m	
	sions in mo ale 1:50	etres C	lient Bro	ookbanks.	/ CEG	Meth Plant		able Perc			Logged By F	-	

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Ar	ea 1		CD02
Job No	Date 30-09-16	Ground Level (m)	Co-Ordinates ()	CP03
GEG-16-458	30-09-16		E 625,921.8 N 244,670.9	
Contractor				Sheet
				2 of 2

SAMPL	ES& TI	ESTS	5					STRA	TA					tua tua
Depth	Type No	Test Result	Water	educed _evel	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
8.00	D					(0.40)	MADE GF sub-rounde	ROUND - G ed flint.	Grey sandy (GRAVEL. (Gravelism	edium		
8.40	D			ļ.	· · · · · ·	- - -	Brown clay	yey coarse s	SAND with	occasional	shell fragm	nents and whole		-
						- - -		ERED RED	CRAG FC	RMATION	I)			
9.00		N39				- - -	9.00 - 10.5	0 Becomin	g dense					
						- [(2.10)								
9.50	D					- ` ´ -								
						- - -								
						- - 10.50								
10.50 10.50	D	N50/				-	Extremely	weak brow shell fragme	n coarse sli	ghtly dayey	SANDST	ONE with		
10.50		145mm				- - -	(RED CRA	AG FORMA	ATION)	asiulai Wik) le 31 le 15.			
						- - -								
11.50	D					- - -								
						- - -								
12.00		N50/ 176mm				- - -								
		17011111				- - -								
12.50	D					- - -								
						- (4.95)								
						- - -								
13.50 13.50	D	N15/				- -	13.50 - 15.	.00 Becomii	ng weak					
10.00		0mm				- -								
						- - -								
14.50	D					- - -								
						-								
15.00		N50/ 147mm				- - -								
					::::::	15.45								$\frac{1}{2}$
						- - -								
Bori	ng Prog	ress and				ns		Chisellin	g	Water	Added	GENE	RAL	
Date	Time	Depth	Dept	Casing th D	ia.mm	Water Dpt	From	То	Hours	From	То	REMA		
												No groundwencountered. 2. standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	led 10 10-1m	m,
All dimens	sions in me	etres Cl	lient	Brook	banks/	'CEG		nod/			g	Logged By		

Project				BOREHOLE No
Adastral Park,	Ipswich, IP10 0BL - A	Area 1		CD04
Job No	Date 10-10-16	Ground Level (m)	Co-Ordinates ()	CP04
GEG-16-458	10-10-16		E 626,002.0 N 244,768.5	
Contractor	•			Sheet
				1 of 2

00.100.0.													
											1	of 2	1.
SAMPLES	S& TI	ESTS	_				STRA	TA					ant/
Depth	Type No	Test Result	Wated Fey		Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/ Backfill
0.10	D				(0.60)	MADE GR with occasi fragments o	onal gravel-	sized fragn	nents of gla	ravelly meass. Gravel is	dium SAND s medium		
0.60	D				(0.70)	MADE GR fragments o	OUND - B of brick, cor	rown SANI ncrete and v	O & GRAV arious litho	EL. Gravel logies.	is medium		
- 1.50 - 1.50 - 1.50	D	N25			. (1.70)	Medium de fragments a (WEATHE	and occasio	nal whole sh	nells.		shell		
2.50	D				- - -	2.50 - 12.0	0 With num	erous shell	fragments a	and wholes	hells		
3.00		N50/ 235mm			3.00	Extremely (RED CRA 3.00 - 12.0	G FORMA	TION)					_
3.50	D				-	3.00 - 12.0	o becoming	iveiy deise	7				
- 4.50 - 4.50 	D	N50/ 210mm	1										
5.50	D	N50/	<u>1</u>										
6.50	D	100mm	<u>‡</u>										
7.50 7.50	D	N50/ 160mm			(9.00)								
Borin	g Prog	jress and		Observatio		(Chiselling)	Water	Added	GENE		
Date T	Γime	Depth	Depth	asing ∣Dia.mm	Water Dpt	From	То	Hours	From	То	REM <i>A</i>	١RKS	
											Groundwate at 6.90m, risin after 20mins. 2 backfilled upor completeion.	g to 5.40 2. Hole	ntered Om

AGS3 UK BH GEG-16-458 ADASTRAL PARK, IPSWICH.GPJ GINT STD AGS 3_1.GDT 12/12/16

All dimensions in metres Scale 1:50 Client Brookbanks / CEG Method/ Plant Used Cable Percussion Rig Logged By FT

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	æ1		CD04
Job No	Date 10-10-16	Ground Level (m)	Co-Ordinates ()	CP04
GEG-16-458	10-10-16		E 626,002.0 N 244,768.5	
Contractor				Sheet
				2 of 2

SAMPLI	ES&T	ESTS						STRA	TA					int/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/
						-	Extremely (RED CRA	weak brow	n SANDST	ONE.				
8.50	D					-	(ILD OIV	to i oi tivii	(11011) (00	пипаса				
0.30						-								
9.00		N50/ 170mm				- - -								
9.50	D													
3.30														
						- -								
10.50	D					-								
10.50		N50/ 168mm				- - -								
						- - -								
11.50	D					- - -								
						12.00								
12.00 12.00	D	N50/				(0.70)	Extremely (THAMES	weak grey l CLAY FO	MUDSTON RMATION	1E. I)				
12.40 12.50	D D	100mm				12.70								
12.30						-								
						-								
						-								
						- -								
						-								
						-								
						- - -								
						-								
						-								
Bori	ng Prog	ress and				ns		Chisellino	g	Water	Added	GENE		
Date	Time	Depth	D	Casin epth L	g Dia.mm	Water Dpt	From	To	Hours	From	То	REMA		
							12.5	12.70	0.5hr			Groundwater at 6.90m, rising after 20mins. 2. backfilled upon completeion.	to 5.4 Hole	inte 10m
All dimens	ions in molecular	etres C	lient	Brook	kbanks/	CEG	Meth	nod/				Logged By		

Project				BOREHOLE No
Adastral Park,	Ipswich, IP10 0BL - A	Area 1		CDOE
Job No	Date 06-10-16	Ground Level (m)	Co-Ordinates ()	— CP05
GEG-16-458	06-10-16		E 626,049.7 N 244,818.6	
Contractor		•		Sheet
				1 of 2

SAMPL	ES&T	ESTS	क					STRA	TA				y nent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology Instrument/
0.10	D					(1.00)	MADE GR medium fra	ROUND - E agments of I	Brown claye brick, concr	y gravelly r ete.	nedium SA	ND. Gravel is	
1.00	D	N50/				(0.60)	cobble-size sub-angular	d fragment flint and c	s of concrete concrete.	e. Gravelis	sub-rounde		
1.60	D	245mm					Very dense occasional (WEATHE 1.60 - 2.50	whole shell RED RED	s. CRAG FO	RMATION		agments and	
2.50	D		1 1			·- - - - - - - -							
3.00 3.50	D	N50/ 215mm	_ -			 - - - - -							
						. - 							
4.50 4.50	D	N50/ 180mm				- - - - - - - -							
5.50	D		<u>‡</u>			- - - - - -							
6.00		N50/ 154mm				(8.90)							
6.50	D					- - - - - - -							
7.50 7.50	D	N50/ 104mm				- - - - - -							
	ring Prog						1	Chisellin	Ť –		Added	GENE	
Date	Time	Depth	D	Casin epth L	ng <u>Dia.mm</u>	Water Dpt	From	То	Hours	From	То	REMA 1. Groundwater at 5.50m, rising after 20mins. 2. standpipe install responce zone 1 bentonite seal 1: cover 0.2-0m.	encounter to 3.00m 50mm led 10m, 10-1m.
	nsions in m ale 1:50	etres C	lient	Brool	kbanks	/ CEG	 Meth Plant	od/ Used C	Lable Perc	ussion Ri	<u> </u>	Logged By FT	-

Project				BOREHOLE No
Adastral Park,	lpswich, IP10 0BL - Aı	rea 1		CP05
Job No	Date 06-10-16	Ground Level (m)	Co-Ordinates ()	CPUS
GEG-16-458	06-10-16		E 626,049.7 N 244,818.6	
Contractor				Sheet
				2 of 2

<u> </u>	_ES&T		Water	D		Depth		STRA					g
Depth	Type No	Test Result	Š	Reduced Level	Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology
8.50	D					-	occasional	whole shell	rse SAND v s. CRAG FO			agments and ed)	
9.00		N50/ 184mm				- - - -							
9.50	D					- - - - - -							
10.50 10.50 10.70 10.90	D D D	N21				- 10.50 - 10.70 - 10.90	(WEATHE \10.50 - 10.	70 Becomii	AY. MES CLA' ng medium		TION)	/,	
					× -× -> × -× -> × -× -> × -× -> × -× -> × -× -> × -× -> × -× -> × -× ->		(Stiff) arev	RED THA	MES CLAY Y. MES CLAY				
12.00 12.00	D	N23			× × × × × × × × × × × × × × × × × × ×								
13.00 13.50	D	N22			X X X X X X X X X X X X X X X X X X X	(4.55)							
14.50	D				× × × × × × × × × × × × × × × × × × ×								
15.00 15.00	D	N27			X - X - X - X - X - X - X - X - X - X -	15.45							
					<u></u>	- - - -	П	OI:		144.6	A		
	ring Prog						1	Chisellino Ta	ĭ		Added	GENE REMA	RAL
Date	Time	Depth	D	Casin epth L	Sia. mm	Water Dpt	From	То	Hours	From	То	1. Groundwater at 5.50m, rising after 20mins. 2 standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	encount to 3.00r 50mm led 10m.
	ļ												

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		CDOG
Job No	Date 07-10-16	Ground Level (m)	Co-Ordinates ()	CP06
GEG-16-458	07-10-16		E 626,121.8 N 244,759.0	
Contractor				Sheet
				1 of 2

SAMPL	ES&TI		Water	- .		Depth		STRA	TA) dg
Depth	Type No	Test Result	eM	Reduced Level	Legend	(Thick- ness)				RIPTION			Geology
0.10	D					(0.70)	with occas	ROUND - E ional gravel ed flint and (Brownish gre -sized fragn quartzite.	ey clayey go nents of cor	ravelly med norete and b	lium SAND rick. Gravel is	
0.70	D						Brown slig (WEATHE	htly dayey ERED RED	medium SA CRAG FO	ND. RMATION	1)		
1.50 1.50	D	N23				- - - - - -	1.50 - 6.30 sub-angula	Becoming r to sub-rou	medium de Inded sandst	nse slightly one.	gravelly. G	Gravelis	
2.50	D					- - - - - -							
3.00		N26				_ - -							
3.50	D					(5.60)							
4.50 4.50	D	N24				- - - - - -							
5.50	D	N26	1			- - - - - -							
6.00 6.30	D	N20				6.30	whole shel	ls.	with numero		•	nd occasional	
7.50 7.50	D	N50/ 160mm				(2.70)	7.50 - 15.4	5 Becomin	g very dense	e			: : : :
Bo	ring Prog	jress and						Chisellin	g	Water	Added	GENE	
Date	Time	Depth	D	Casir epth I	ng Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	
												Groundwater at 9.20m, rising after 20mins. 2 standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	to 6.00n . 50mm led 10m, 10-1m,
	nsions in me ale 1:50	etres C	lient	Broo	kbanks/	CEG	Meth	nod/ t Used (Lable Perc	ussian Di		Logged By	<u> </u>

Project				BOREHOLE No
Adastral Park,	lpswich, IP10 0BL - Ar	rea 1		CDOC
Job No	Date 07-10-16	Ground Level (m)	Co-Ordinates ()	CP06
GEG-16-458	07-10-16		E 626,121.8 N 244,759.0	
Contractor			•	Sheet
				2 of 2

SAMPL		Test	Water	Reduced		Depth (Thick-		STRA					Geology	Instrument/
Depth	Type No	Result	>	Level	Legend	(Thick- ness)				RIPTION			99	Insti
8.50	D						whole shel	ls.	with numero		_	nd occasional ed)		
-						9.00								
9.00		N50/ 56mm	₹			-	Very weak and shell f	t brown coa ragments. AG FORMA	rse SANDS	TONE with	n occasiona	al whole shells		
9.50	D					- - -	(RED CRA	AG FORM <i>A</i>	ATION)					
-														
10.50	D					- - -								
10.50		N50/ 182mm				-								
-						- - -								
11.50	D					- - -								
11.50						-								
12.00		N50/ 175mm				_ (6.45)								
12.50	D	17311111				_ (0.40) - -								
12.50						-								
-						- - -								
13.50	D													
13.50		N50/ 137mm				- - -								
•						- -								
14.50	D													
14.50														
15.00		N50/ 203mm				- -								
						15.45								_
			11.5			-	П	<u> </u>				1		
Bor Date	ng Prog	ress and Depth		aterObs Casin epth D		ns Water Dpt	From	Chisellino To	9 Hours	Water From	Added To	GENE REMA	RAL	3
Date	THIE	Бфит	D	epth C	JIa. mm	<u>Dpt</u>	11011	10	Tiours	110111	10	1. Groundwater	encou	ınter
												at 9.20m, rising after 20mins. 2 standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	led 10	m,
All dimen:	sions in me	otros C	lient	Brook	kbanks/	CEG	Meth	and/				Logged By		

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		CP07
Job No	Date 04-10-16	Ground Level (m)	Co-Ordinates ()	CPUI
GEG-16-458	05-10-16		E 626,062.3 N 244,661.3	
Contractor				Sheet
				1 of 2

SAMPL	ES&T	ESTS	_					STRA	TA					July 1
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
0.10	D					(0.40)	occasional	ROUND - D to numerou (ED TOPS	s rootlets.	clayey med	ium SAND	with		
0.40	D					- - - - - -	MADE GF occasional Gravel is s	ROUND - V to numerou ub-rounded	ery clayey s gravel-siz flint.	slightly gra ed fragmen	velly SANE ts of brick a	O with and concrete.		
1.50 1.50	D	N5				-	1.50 - 4.50	Becoming	loose					
2.50	D						2.50 - 5.70 concrete) With occas	sional grave	l-sized frag	ments of br	ick and		
3.00		N5				(5.30)								
3.50	D					-								
4.50 4.50	D	N12				-	4.50 - 5.70	Becoming	medium de	nse				
5.50	D					5.70								
5.70 6.00	D	N50/ 243mm				- - - - -	Very dense (WEATHE	elight browi ERED RED	n slightly d CRAG FO	ayey mediu RMATION	ım SAND. I)			
6.50	D					-								
7.50 7.50	D	N25				-	7.50 - 10.8	60 Becominç	g medium d	ense				
Bor	ing Prog	jress and						Chisellin]	Water	Added	GENE		
Date	Time	Depth	De	Casin apth [g Dia.mm	Water Dpt	From	То	Hours	From	То	REMA		-
												No groundwencountered. 2. standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	50mn 1ed 10 10-1m)m, ,
All dimens	sions in mo	etres C	lient	Brool	kbanks/	CEG	Meth Plant		able Perc			Logged By		

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Ar	ea 1		CP07
Job No	Date 04-10-16	Ground Level (m)	Co-Ordinates ()	CPUI
GEG-16-458	05-10-16		E 626,062.3 N 244,661.3	
Contractor				Sheet
				2 of 2

SAMPL	ES& T	ESTS	` ₩					STRA	TA					ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
8.50	D					(5.10)	Very densa (WEATHE	e light browi ERED RED	n slightly d CRAG FO	ayey medit RMATION	ım SAND. I) <i>(continu</i> d	ed)		
9.50 9.50	D	N13				-								
10.50 10.50 10.80	D D	N31				10.80	Brown coa whole shel		with numero	ous shell fra	agments an	d occasional		-
12.00 12.00	D	N50/ 268mm				(1.20)	Extremely fragments.	Weak brown	n coarse SA			nerous shell		-
13.00 13.50	D	N50/ 249mm				(3.45)								
14.00	D	249(1)(1)				- (3.40) - - - - - -								
15.00 15.00	D	N50/ 150mm				15.45								_
Bor	ing Prog	iress and	l Wa	ater Obs	ervatio	ns		Chisellino	יי	Water	Added	GENE	PΔI	
Date	Time	Depth		Casin epth D		Water Dpt	From	To	Hours	From	То	REMA	RKS	
						<u> </u>						No groundwa encountered. 2. standpipe instal responce zone of bentonite seal 1 cover 0.2-0m.	50mm led 10r 10-1m,	n,
All dimen	sions in me	etres C	lient	Brook	kbanks/	CEG	Meti	nod/ t Used C	able Perc			Logged By	-	

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		CP08
Job No	Date 27-09-16	Ground Level (m)	Co-Ordinates ()	CPU8
GEG-16-458	28-09-16		E 625,994.5 N 244,658.8	
Contractor				Sheet
				1 of 2

Contractor											Sheet		
											1 0	of 2	
SAMPL	ES&T	ESTS	_				STRA	TA					ant/
Depth	Type No	Test Result	Reduce Leve	ed Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/ Backfill
0.10	D				(0.40) 0.40	occasional	to numerou	s rootlets.	clayey med	ium SAND v	with		
0.40	D				(1.30)	MADE GR	ROUND - G	reyish brow gravel-size	ed fragment	ery gravelly r s of brick an	medium d concrete.		
1.50	D	NO			1.70								
1.50 1.70	D	N8				MADE GR gravelly CL and concret	_AY with n	oft to firm I umerous gr	ight greyish avel to cobb	n brown very ble-sized frag	sandy gments of brick		
2.50	D				(1.80)								
3.00		N7			3.50								
3.50	D					MADE GR	with occasio	onal cobble	-sized pock	ry clayey SA ets of clay, a e.	ND & nd with		
4.50 4.50	D	N8											
5.50	D				-								
6.50	D	N19			(6.00)	6.00 - 9.50	Becoming	medium de	nse				
7.50 7.50	D	N19			\								
Bori	ng Proc	gress and	l Water O	bservatio	 ons		Chiselling	7	Water	Added	GENE	RAI	•
Date	Time	Depth		ing Dia.mm		From	То	Hours	From	То	REMA	RKS	
			•								No groundw. encountered. 2. backfilled upon completeion.	ater Hole	

AGS3 UK BH GEG-16-458 ADASTRAL PARK, IPSWICH.GPJ GINT STD AGS 3_1.GDT 12/12/16

All dimensions in metres Scale 1:50 Client Brookbanks / CEG Method/ Plant Used Cable Percussion Rig Logged By FT

Project					BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	æ1			CDAO
Job No	Date 27-09-16	Ground Level (m)	Co-Ordinates ()		CP08
GEG-16-458	28-09-16		E 625,994.5	N 244,658.8	
Contractor			•		Sheet
					2 of 2

Contractor											Sheet		
											2 0	f 2	
SAMPLI	ES&T	ESTS					STRA	TA					ant/
Depth	Type No	Test Result	M Kedr	iced /el Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
8.50 9.00	D	N17			×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×- ×	GRAVEL V	with occasio	onal cobble	-sized pocke	ry clayey SA ets of clay, a . <i>(continued)</i>	nd with		
9.50	D				9.50 - - - - - - - - - - - - - -		S.			onal shell fraç	gments and		
10.50 10.50	D	N50/ 294mm			- 10.50	Extremely shell fragm (RED CRA	ents.		ONE with c	occasional w	hole shells and		
11.50 12.00	D	N60/			-								
12.50	D	253mm			- - - - -(4.95)	12.50 - 15. occasional	45 Becomir whole shell	ng coarse w s	ith numerou	ıs shell fragn	nents and		
13.50 13.50	D	N50/ 168mm			-								
14.50 14.50	D	N50/ 186mm			- - - - - - - - - - - - - - - - - - -								
Bori	ng Prod	ress and	Water (Observatio	ons		Chiselling		Water	Added	GENE	RAI	
	Time	Depth		asing Dia. mm		From	То	Hours	From	То	REMA 1. No groundwa encountered. 2.	RKS	
											encountered. 2. backfilled upon completeion.	Hole	

AGS3 UK BH GEG-16-458 ADASTRAL PARK, IPSWICH.GPJ GINT STD AGS 3_1.GDT 12/12/16

All dimensions in metres Scale 1:50 Client Brookbanks / CEG Method/ Plant Used Cable Percussion Rig Logged By FT

Project				BOREHOLE No
Adastral Park,	Ipswich, IP10 0BL - A	Area 1		CDOO
Job No	Date 05-10-16	Ground Level (m)	Co-Ordinates ()	CP09
GEG-16-458	05-10-16		E 626,158.8 N 244,630.0	
Contractor	•	·		Sheet
				1 of 2

SAMPL	ES & T	ESTS	Б					STRA	TA				λί	hent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/
0.10	D					(0.60)	occasional	ROUND - D to numerou: (ED TOPS)	s rootl <i>e</i> ts.	dayey med	ium SAND) with		
0.60	D					- (0.60)	MADE GF	ROUND - br	own mediu	ım SAND.				
1.20	D					1.20		ROUND - L		layey grave	ally SAND	with occasional		- ::
1.50		N4				[[(1.30)			·					
2.00	D					- - - - 2.50								
2.50	D					- 2.50 - -	MADE GF cobble-size	ed fragments	irm brown s of brick, c	sandy CLA' halk, and w	Y with nun rith occasio	merous gravel to onal cobble-sized		
3.00		N9				- - - -	pookets 01	sanu.						
3.50	D					(2.70)								
4.50 4.50	D	N7				-	4.50 - 5.20	Becoming :	soft					
5.20	D					(0.60)	MADE GF sub-rounde	ROUND - G ed quartzite a	reenish bro and flint.	wn dayey (gravelly SA	AND. Gravel is		
5.80 6.00	D	N8				5.80 - 6.10	gravel-size	ROUND - G d fragments) Becoming :	of chalk.	•	_AY with o	occasional /		-{:. -{:.
6.10	D					-	MADE GF		oft to firm o	areenish bro	own sandy (brick and	CLAY with concrete.		
7.00	D													
7.50		N7				- - -	7.50 - 9.00	Becoming :	soft					
Bor	ing Prog	ress and				ns		Chiselling)	Water	Added	GENE		
Date	Time	Depth	D	Casin epth [g Dia.mm	Water Dpt	From	То	Hours	From	То	REMA		<u>;</u> —
												1. No groundwa encountered. 2. standpipe install responce zone 1 bentonite seal 1 cover 0.2-0m.	50mm ed 10 0-1m,	m,
All dimen			lient		kbanks/									

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		CDOO
Job No	Date 05-10-16	Ground Level (m)	Co-Ordinates ()	CP09
GEG-16-458	05-10-16		E 626,158.8 N 244,630.0	
Contractor				Sheet
				2 of 2

SAMPL	ES&T	ESTS	b r.				STRA	·ΤΑ					ent/
Depth	Type No	Test Result	Medina Reduced Features	ced rel Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	netriment/
9.00 9.00	D	N11			(6.50)	numerous (continued 8.00 - 9.00	gravel to co	obble-sized f very sandy	greenish bro ragments o	own sandy f brick and	CLAY with concrete.		
10.00	D				- - - - -								<u> </u>
11.00	D	N9											
12.00 12.00	D	N7			12.60		.60 Becomi	ng soft					
12.60	D			· · · · · · · · · · · · · · · · · · ·		Extremely shell fragn	weak brow nents and w AG FORM	hole shells.	arse SAND	STONE w	ith occasional		
13.50 13.50	D	N50/ 212mm			(2.85)								
14.50 15.00	D	N50/			- - - - - - -								
10.00		110mm			15.45								
Bori	ng Prog	gress and	l Water (Observatio			Chisellin	g	Water	Added	GENE	RAL	<u></u>
Date	Time	Depth	Depth	asing Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	3
			_ 55.1								No groundwencountered. 2. standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	50mm 1ed 10 10-1m,)m, ,
All dimens	sions in m	etres C	lient Br	ookbanks	/ CFG	Meti	and/				Logged By		_

Project	BOREHOLE No
Adastral Park, Ipswich, IP10 0BL - Area 1	WS01
Job No Date Ground Level (m) Co-Ordinates ()	VVOUT
GEG-16-458 23-09-16 E 625,627.5 N 244,885.9	
Contractor	Sheet
	1 of 1

Contractor										Sheet		
										1 0	of 1	
SAMPLES &	TESTS	_					RATA					ent/
Depth Typ	e Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			RIPTION			Geology	Instrument/
					(0.30) 0.30	MADE GROUND sub-rounded quart) - (Soft) browr zite.	n very sandy	gravelly CLA	Y. Gravel is		
					- - - - (1.07)	MADE GROUND) - light brown	dayey COB	BLES of flint.			
1.00	N50/ 220mm				- (1.07) - - - - 1.37	0.99 - 1.00 Becom	ning very dense	,				
					- - -							
					- - - -							
					- - -							
					- - -							
					- - -							
					- - -							
					- - -							
					- - -							
Boring Pro	1				ns Mater	Chisel		Water		GENE		
Date Time	Depth		Casir Oepth I	ju Dia.mm	Water Dpt	From To	Hours	From	2 p o	REMA . Ground wet to the time the time to	rom 0. at 1.3 bles. 3.	50r 7mc
All dimensions in Scale 1:31.2		lient	Broo	kbanks/	CEG	Method/ Plant Used	Window Sa	omplies D	L	vith arisings. ogged By		

Project					BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1			WS02
Job No	Date	Ground Level (m)	Co-Ordinates ()		VV3U2
GEG-16-458	23-09-16		E 625,649.4	N 244,789.1	
Contractor					Sheet
					1 of 1

SAMPLI	ES& TI	ESTS	ب					STRA	IA				_	Ę.
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCR	RIPTION			Geology	netriment/
						(0.70)	MADE GF	ROUND - C	COBBLES	of crushed o	concrete.			
1.00		N10				(1.00)	MADE GF medium S/	ROUND - L AND. Graw	oose to me el is sub-rou	dium dense Inded flint.	brown slig	htly gravelly		
						1.70	MADE GF	ROUND - (I	_oose) brov	n and yello	owish brow	n GRAVEL of		:: ::
2.00		N5				2.00	sub-rounde MADE GF		oose greyis	h brown m	edium SAN	ID.		
3.00		N6				3.00	MADE GF	ROUND - S	oft grey ver	y sandycl	ayey SILT.			
4.00		N5				(1.50) 4.50								
5.00		N1				- - - - - - - (1.47)	(WEATHE	vish brown r ERED RED Becoming	medium SA CRAG FO very loose	ND. RMATION	l)			
5.70		N50/ 145mm	_			- - - 5.97	5.70 - 5.97	' Becoming	very dense					
						- - - -								
		ress and					1	Chisellin	ĭ		Added	GENE		
Date	Time	Depth	De	pth [g Dia.mm	Water Dpt	From	То	Hours	From	То	REMA 1. Ground wet f 2. 50mm stand; 5.97m, respono 5.97-1m, bento 1-0.3m, flush ox	from 4 pipe in e zone nite se	4.50 nstal e al
All dimens		etres C		Brool										

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	æ1		WS03
Job No	Date	Ground Level (m)	Co-Ordinates ()	VV303
GEG-16-458	23-09-16		E 625,629.8 N 244,891.2	
Contractor				Sheet
				1 of 1

SAMPL	ES& TI	ESTS	Б			5 "		STRA	TA				≥6	nent/
Depth	Type No	Test Result	Water	Reduced Level	Leaena	Depth (Thick- ness)				RIPTION			Geology	Instrument/
						0.30	MADE GR sub-rounde	ROUND - (9 d quartzite.	Soft) brown	very sandy	gravelly C	LAY. Gravel is		
						0.60	MADE GR	ROUND - li	ght brown c	layey COB	BLES of fl	int.		
1.00		N50/ 95mm				(1.00)	MADE GR occasional occasional	ROUND - d cobble-size gravel-size	ark brown c d pockets of d pockets of	dayey silty of concrete a ash. Grave	gravelly SA nd brick; a ll is sub-ano	AND with nd with gular flint.		
Do	ring Proc		1 / / /	ator Obe	an esti a	-	11 /	?hiadlin	~	\\/atax	Λ ddad	0515		
Date	ring Prog	ress and Depth		Casin Cepth D		ns Water Dpt	From	Chisellino To	Hours	Water From	Added To	GENE REMA		
Date	THIS	Бфш	ט	reptn C	JIA. MM	<u>Dpt</u>	11011	10	i roul 3	TIMI	10	1. No groundwa encountered. 2. at 1.60m due to obstruction/cobt 50mm standpip 1.6m, responce 1.6-0.5m, bento 0.5-0.3m, flush 0.3-0m.	ater Hole r potent ples. 3. e instal zone	efus tial led
	nsions in ma le 1:43.75	etres C	lient	Brook	kbanks/	CEG	Meth Plant	od/ Used W	indow Sa	mpling Ri	ia	Logged By FT		

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	æ1		WS04
Job No	Date	Ground Level (m)	Co-Ordinates ()	VV304
GEG-16-458	23-09-16		E 625,770.5 N 244,832.0	
Contractor				Sheet
				1 of 1

SAMPL	ES&T	ESTS						STRA	TA			1 o		Jut,
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/
					0	- - - - - -	flint.	rown slightl VE CATCŀ				l is sub-rounded		
1.00		N15				- - - - - - -	1.00 - 3.00	Becoming	medium de	nse				
2.00		N11				(3.50)								
3.00		N4				3.50		Becoming						
						(0.50)	(WEATHE	asionally w ERED RED	CRAG FO	RMATION)			
4.00		N50/ 115mm				4.23	Extremely (RED CRA	weak browi AG FORMA	n SANDST ATION)	ONE.				
						- - - - -								
						- - - -								
						- - - - -								
Bor	ing Proc	gress and	l Wa	ater Obs	servatio	- - ons		 Chisellino		Water	Added	GENE	<u></u>	
Date	Time	Depth		Casin epth L		Water Dpt	From	To	Hours	From	To	REMA	RKS	;
						<u> </u>						1. No groundwa encountered. 2. at 4.23m. 3. 50r standpipe install responce zone 4 bentonite seal 1- cover 0.3-0m.	nm ed 4m	١,
All dimen	sions in mo	etres C	lient	Brook	kbanks /	/ CEG	Meth Plant	nod/	indow Sa			Logged By FT		

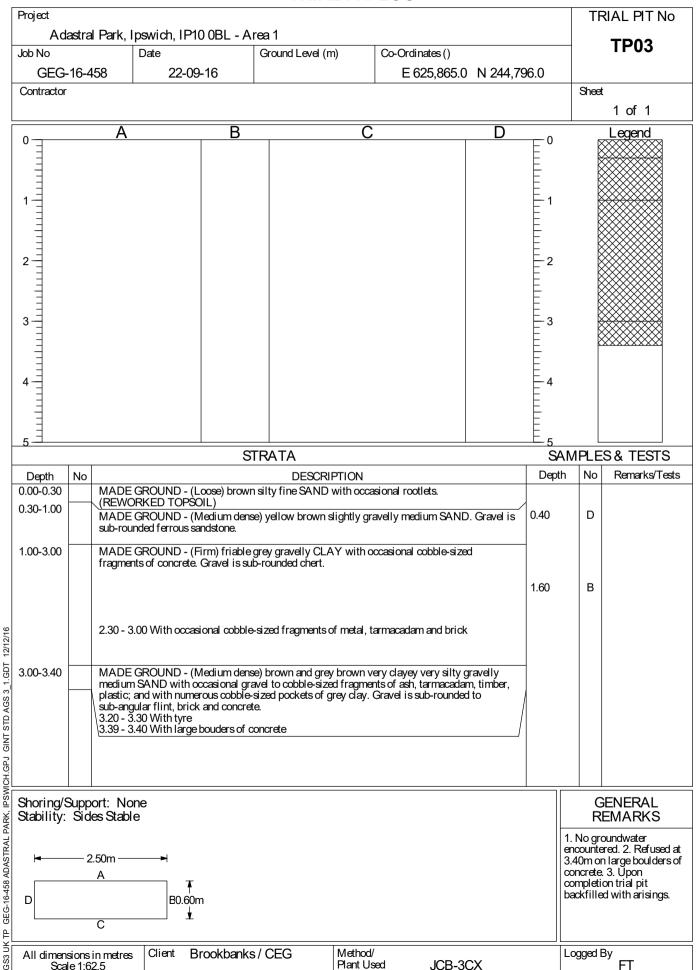
Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		WS05
Job No	Date	Ground Level (m)	Co-Ordinates ()	VVOUS
GEG-16-458	23-09-16		E 625,684.0 N 244,816.3	
Contractor				Sheet
				1 of 1

SAMPL	ES & TI	ESTS	ф				STRA	TA]
Depth	Type No	Test Result	M Kedr		Depth (Thick- ness)			DESC	RIPTION			Geology
					(0.50) 0.50	MADE GR (REWORK	OUND - B ED TOPS	rown silty f OIL)	ine SAND	with occas	ional rootlets.	
					- 0.75	MADE GR	OUND - C	rangish bro	wn gravelly	/ medium S	SAND.	
1.00		N11			(1.45)	MADE GR occasional cobble-size chert, flint,	gravel-size: d pockets c	d fragments f sand. Gra	ofash;and	with nume	erous	
2.00		N47			2.20	2.00 - 2.20	Becoming	stiff to very	stiff			
					(1.10)	MADE GR Gravel is su	OUND - Dub-angular f	Jense greyis Tint.	sh brown sli	ghtly grave	BIY SAND.	
3.00		N17			3.30	3.00 - 3.30						
					(0.70)	MADE GR gravel-sized	OUND - V d fragments	Vhite slightl of ash. Gra	ygravellyS avelissub-a	SILT with o angular cha	occasional alk and brick.	
4.00		N33				MADE GR GRAVEL (cobble-size	of sub-roun	ded quartzit	sh brown ve te and flint,	ry silty ver with occas	y clayey sandy sional	
5.00		N21			_(1.93)	5.00 - 5.93	Becoming	dense				<u>}</u>
5.70		N50/ 130mm			5.93 -							
					- - - - -							
Bori	ing Prog	ress and) Observatio			Chisellin	9	Water	Added	GENE	
Date	Time	Depth	Depth	asing Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	
											1. Ground wet 2. Hole refused potential obstru 50mm standpip 5m, responce z bentonite seal 1 cover 0.3-0m.	dat 5.93 uction. 3. be installe rone 5-1n
All dimens			ient Br	rookbanks /		Meth						

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	ea 1		MCOC
Job No	Date	Ground Level (m)	Co-Ordinates ()	WS06
GEG-16-458	23-09-16		E 625,750.7 N 244,939.3	
Contractor				Sheet
				1 of 1

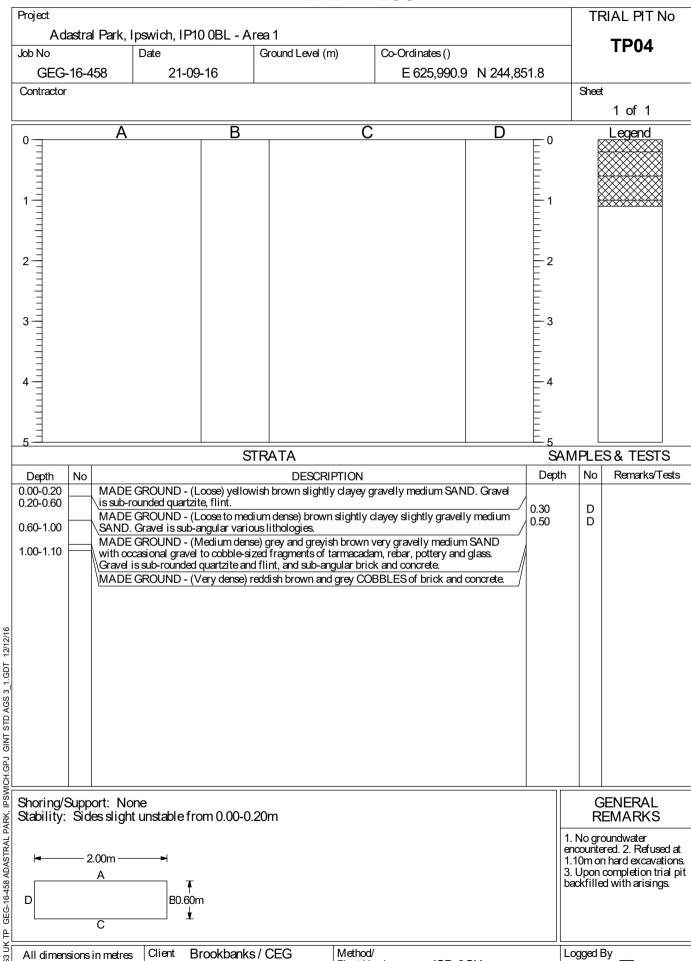
SAMPL	ES&T	ESTS	╆ -					STRA	TA				>	tra /
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
0.10	D					0.20		ROUND - C	OBBLES	of crushed ta	armacadam.			
0.10						0.30			rown mediu	ım SAND 8	& GRAVEL	. Gravel is		-
						- - - -	Sub-rounde Brown occ (WEATHE	asionally da ERED RED	ark brown m CRAG FO	nedium SAN RMATION	ND. I)	/		
1.00 1.00	D	N15				- - - -	1.00 - 3.00	Becoming	medium de	nse				
1.50	В					- - - (3.00)								
2.00		N11				- - - -								
3.00		N7				- - - -	3 00 - 3 30	Becoming	loose					
0.00						3.30								<u>.</u> :.
						- - - - - (1.09)	Brown occ (WEATHE	asionally wl ERED RED	hite mediun CRAG FO	n SAND. RMATION	1)			
4.00		N50/ 235mm				- (1.09) - - - - 4.39	4.00 - 4.10	Becoming '	very dense					
Bori	ng Prog	ress and				ns		Chisellino	3	Water	Added	GENE		
Date	Time	Depth	De	Casin apth [g Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	3
												1. No groundwa encountered. 2. at 4.10m. 3. 50r standpipe install responce zone 4 bentonite seal 1- cover 0.3-0m.	nm ed 4n	n,
All dimens	sions in mo	etres C	lient	Brool	kbanks/	CEG	Meth	nod/ :Used W		mpling R		Logged By FT		

Project					BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	æa 1			WS07
Job No	Date	Ground Level (m)	Co-Ordinates ()		VV3U1
GEG-16-458	23-09-16		E 625,966.3	N 244,608.4	
Contractor					Sheet
					1 of 1


SAMPL	ES& TI	ESTS	Ф					STRA	TA				- ₂₈	nent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
						0.20	MADE GF	ROUND - C	OBBLES	of crushed o	concrete.			
						(0.65)	MADE GF Gravel is s	ROUND - L ub-rounded	oose browr flint and qu	n slightly gr µartzite.	avelly med	ium SAND.		
1.00		N6				(1.05)	MADE GF chert.	ROUND - S	oft grey gra	avelly CLA	Y. Graveli	s sub-rounded		
2.00		N9				1.90	MADE GF occasional (BURIED	ROUND - F flint gravel. TOPSOIL)	irm black o	rganic, fibr	ous sandy F	PEAT with		
3.00		N9				(2.30)			irm grey gr	avelly CLA	Y. Gravel	is sub-rounded		
4.00		N7				4.50		Becoming			lbladed so	CAND with		
5.00		N30				(0.50) 5.00 (0.50)	occasional MADE GF silty grave	cobble-size	d pockets o	f brown cla se to dense nal whole b	brown ver	ey SAND with y dayey very gravel-sized ash		
6.00		N50/				(0.80)	MADE GF gravel-size	ROUND - (Sid ash fragm	Stiff) brown ents.		AY with oc	ccasional		
		145mm				6.30								
Bori	ng Prog	ress and	l Wa	ater Ob	servatio	ns		Chisellino		Water	Added	GENE	ERAL	<u>L</u>
Date	Time	Depth			ng Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
				<u> </u>	<u> </u>	<u> </u>						1. Ground wet 2. 50mm stand; 6m, responce z bentonite seal 1 cover 0.3-0m.	oipe ins	stall
All dimens	iono in ma	tros C	lient	Broo	kbanks /	/ CEG	Meth	pod/				Logged By		

Project				BOREHOLE No
Adastral Park, I	pswich, IP10 0BL - Are	xa 1		WS08
Job No	Date	Ground Level (m)	Co-Ordinates ()	VVOUO
GEG-16-458	23-09-16		E 626,120.7 N 244,783.2	
Contractor				Sheet
				1 of 1

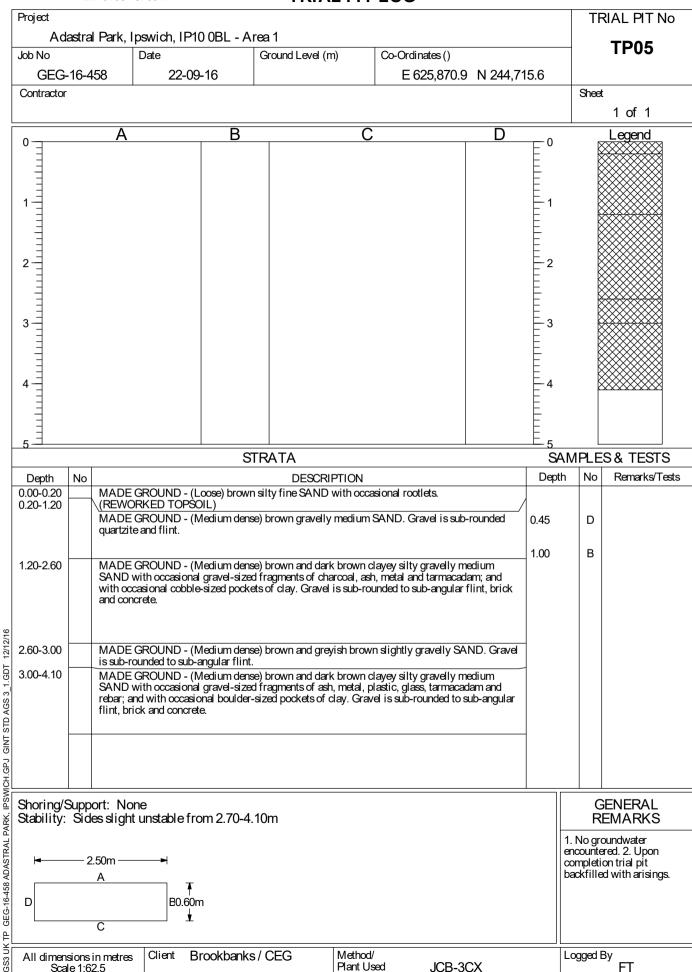
SAMPL	ES& TI	ESTS	بـر					STRA	TA					Instrument/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/
						(1.00)	sub-rounde	ed to sub-an	gularflinta	nd quartzite	e.	ID. Gravel is		
1.00		N27			0 0 0	(1.00)	Medium d SAND. Gr (KESGRA	ense light ye avel is sub- VE CATCH	ellowish bro rounded to s HMENT SU	own slightly sub-angular JBGROUP	gravelly fi flint and q)	ne to medium uartzite.		
2.00		N18					Medium d (WEATHE	ense orangis ERED RED	sh brown me CRAG FO	edium SAN RMATION	ID. N)			
3.00		N12				-								
4.00 5.00		N15				(4.45)		Becoming		n orangish	brown occ	asionally white		
6.00		N41					5.00 - 6.40	o becoming	de ise brow	n, orangisi	brown occ	asonary write		
						- 6.45 - - -	П							
	ring Prog						1	Chisellino T-	Ť		Added	GENE REMA	RAL	
Date	Time	Depth	D	epth I	ng Dia. mm	Water Dpt	From	То	Hours	From	То	1. No groundw encountered. 2. standpipe instal responce zone bentonite seal 1 cover 0.3-0m.	rater . 50mm Iled 6m 6-1m.	n n,
All dimer	noi ono in ma	etree C	lient	Droo	kbanks/	/ OF O	Meth	1/	<u> </u>			Logged By		



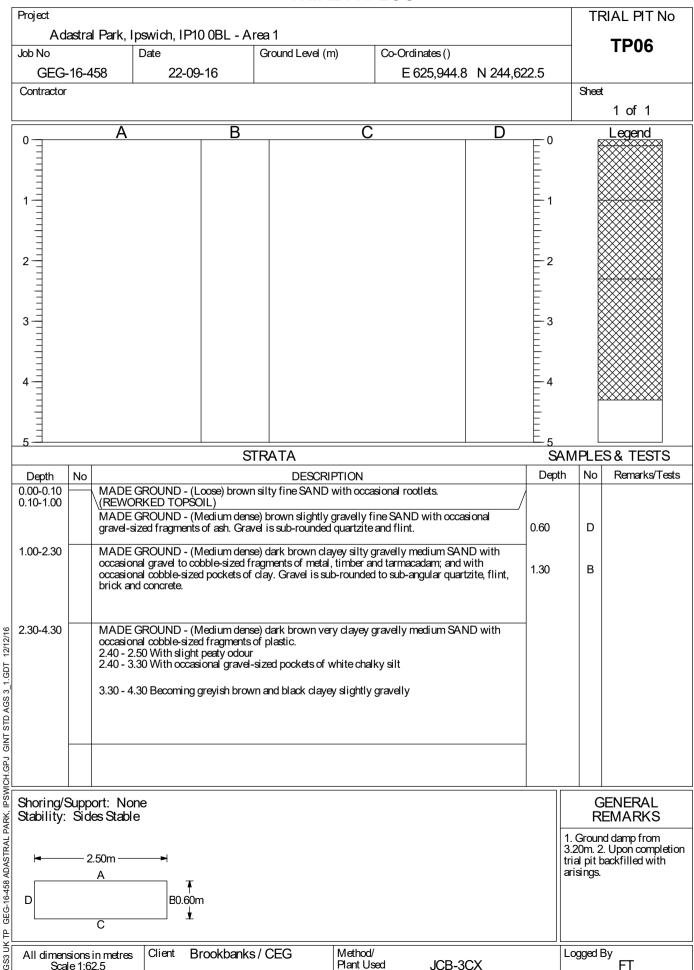
Scale 1:62.5

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

TRIAL PIT LOG



JCB-3CX



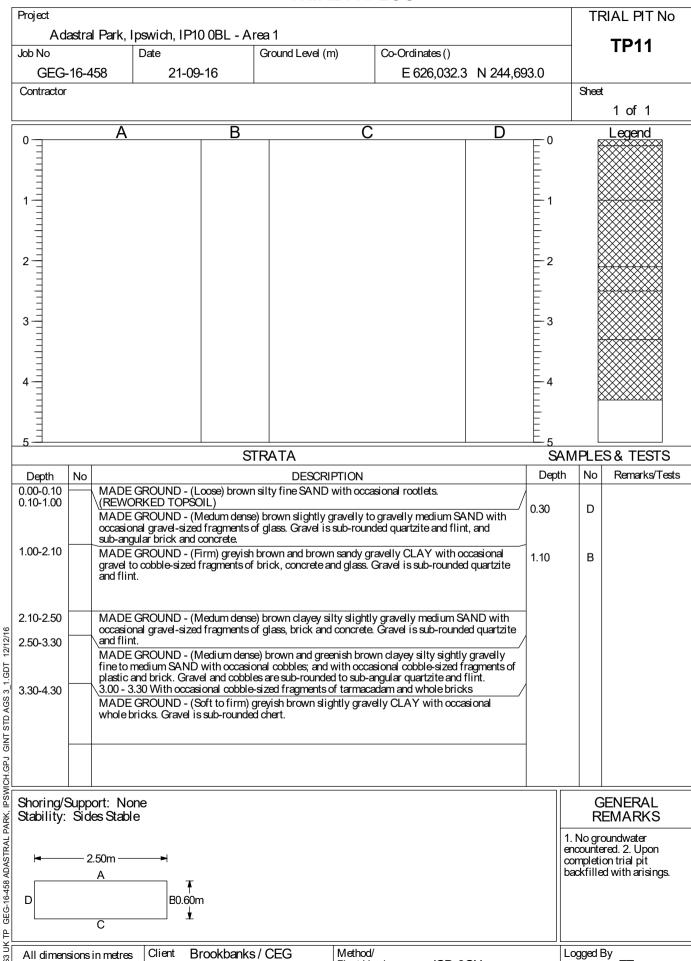
Scale 1:62.5

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

Project										Т	RIAL PIT No
	stra		wich, IP10	0 0BL - A							TP07
Job No	40.4)ate	40	Ground Level (n	n)	Co-Ordinates ()		00.0		07
GEG-	16-4	58	21-09	-16			E 625,94	7.7 N 244,69	96.8	Shee	
Contractor										Sile	1 of 1
2 - 3		A		В		C		D	1 2 3		Legend
_5				S	TRATA			·		AMPLE	ES & TESTS
Depth	No				DESCRI				Dept	h No	Remarks/Tests
0.00-0.20 0.20-1.40		(REWOR MADE G	KED TOPŚC ROUND - (M I gravel-sizec	OIL) 1edium den	n silty fine SAND se) brown slightly of timber. Gravel i	clavev gra	vellv medium SA	.ND with d flint, and	0.30	D	
1.40-1.90		SAND wi	th occasional	boulder-siz	se) greyish brown zed pockets of clay	and silt.			1.60	В	
1.90-3.80		to coarse scobbles. Cobbles. C	SAND with ocasing with occasing the same of the same occasion.	occasional g bbles are su ional cobble	se) grey slightly di ravel-sized fragme ib-rounded to sub-a -sized fragments o r; and with occasio	ents of ash angular fli of tarmaca	and plastic; and ont. dam, metal, rebar	occasional , whole bricks			
Shoring/S Stability:	upp Side	ort: None es Stable	9								GENERAL REMARKS
D	2	50m		n						from 3.0 complet	nd becoming wet 00m. 2. Upon ion trial pit ed with arisings.
All dimens	ionsi		Client B	rookbank	s/CEG	Method/ Plant Us	ed JCF	3-3CX		Logged	By FT

Certificator Certificator Certificator Certificator Certificator Certificator Certificator A B C D O Log Sheet 1 1 Certificator STRATA SAMPLES& Depth No DESCRIPTION Depth No Red (REWORKED TORSOLL) MADE GROUND - (Lose) brown sity fire SAND with occasional rootlets. (REWORKED TORSOLL) MADE GROUND - (Firm) friable grey slightly sandy gravely CLAY withoccasional cobble to bodder-sized fregunests of brick and concrete. Shoring/Support: None Stability: Sides Stable Certificator Strata SAMPLES& SAMPLES& Depth No Red A B C D D O Log SAMPLES& SAMPLES& Depth No Red A D D SCRIPTION Depth No Red A D D SCRIPTION Depth No Red SAMPLES& SAMPLES& SAMPLES& Depth No Red A D D D D D D D D D D D D D D D D D D	Project											TF	RIAL PIT No
GEG-16-458 22-09-16 A B C D Let 1 1 2 3 3 4 4 5 B C D D D D D D D D D D D D D D D D D D		astra			0 0BL - A		0)	Co-Ordinates ()			_		TP08
Contractor A B C D O LS A B C D O SAMPLES & 1 O SAMPLES		.16-/			∟ 16	Ground Level (11	11)		N 244 7	50.8			
STRATA SAMPLES & STRATA SAMPLES & Depth No DESCRIPTION Depth No Reserved Reworks Depth No Reserved Rese			100	22-00	-10			L 020,000.0	1 277,70	0.0	- 5	Sheet	
STRATA SAMPLES & SAMPLES & SAMPLES & SAMPLES & SAMPLES & Depth No DESCRIPTION Depth No Res MADE GROUND - (Loose) brown sity fine SAND with occasional rootlets. (REWORKED TORSOIL) MADE GROUND - (Medium dense) yellowish gray medium SAND. 120-2.10 MADE GROUND - (Firm) frishte gray stightly sandy gravelly CLAY with occasional cobble-sized fragments of brick and concrete. Gravel is sub-rounded chart, brick and concrete. 2.10-4.20 MADE GROUND - (Firm) frishte gray stightly sandy gravelly CLAY with occasional cobble to boulder-sized products of brick and concrete. Gravel is sub-rounded chart, brick and concrete. 2.10-4.20 MADE GROUND - (Firm) frishte gray gravelly CLAY with occasional cobble to boulder-sized products of brick and concrete. Gravel is sub-rounded chart, brick and concrete. Shorting/Support: None Stability: Sides Stable Shorting/Support: None Stability: Sides Stable Legislation of the stable size of the st													1 of 1
STRATA Depth No Depth No Depth No Red O00-0.65 (REWORKED TOPSOIL) O.65-1.20 MADE GROUND - (Loose) brown sitty fine SAND with occasional rootlets. (REWORKED TOPSOIL) O.65-1.20 MADE GROUND - (Medum dense) yellowish grey medium SAND. 1.20-2.10 MADE GROUND - (Firm) friable grey slightly sandy gravelly CLAY with occasional cobble-sized fragments of brick and concrete. Gravel is sub-rounded chert, brick and concrete. 2.10-4.20 MADE GROUND - (Firm) friable grey gravelly CLAY with occasional cobble to boulder-sized pockets of brown sand; and with numerous cobble-sized fragments of timber, plastic and metal. Gravel is medium fragments of brick and concrete. Shorring/Support: None Stabile Stability: Sides Stable GENE REM. 1. Ground dan 3.30m. 2. Upo trial pit backfil arisings.	2 3		A		В		С		D	1 2 2 3			Legend
MADE GROUND - (Loose) brown sitty fine SAND with occasional rootlets. (REWORKED TOPSOIL) MADE GROUND - (Medum dense) yellowish grey medium SAND. MADE GROUND - (Firm) friable grey slightly sandy gravelly CLAY with occasional cobble-sized fragments of brick and concrete. Gravel is sub-rounded chert, brick and concrete. MADE GROUND - (Firm) friable grey gravelly CLAY with occasional cobble to boulder-sized pockets of brown sand; and with numerous cobble-sized fragments of timber, plastic and metal. Gravel is medium fragments of brick and concrete. Shorring/Support: None Stability: Sides Stable GENE REMA 1. Ground dam 3.90m. 2. Upo trial pit backfil arisings.	5				S	TRATA				5 S	AMF	PLE	S& TESTS
REWORKED TOPSOIL) 0.65-1.20		No								Dep	th	No	Remarks/Tests
Shoring/Support: None Stability: Sides Stable Shoring A D BO.60m C Shoring boulder-sized pockets of brown sand; and with numerous cobble-sized fragments of timber, plastic and metal. Gravel is medium fragments of brick and concrete. GENE REMA 1. Ground dam 3.90m. 2. Upo trial pit backfil arisings.	1.20-2.10		MADE G	ROUND - (N ROUND - (F zed fragments	firm) friable of brick and	grey slightly sand d concrete. Gravel	y gravelly is sub-ro	CLAY with occasion unded chert, brick an		0.60		D	
1. Ground dam 3.90m. 2. Upo trial pit backfil arisings.			boulder-s plastic an	ized pockets d metal. Grav	of brown sar relis mediun	nd; and with nume in fragments of brid	rous cobb ck and co	le-sized fragments of ncrete.	timber,	-			
3.90m. 2. Upo trial pit backfil arisings.	Shoring/S Stability:	Supp Sid	ort: Non es Stable	е								RI	ENERAL EMARKS
	⊢	2	A	∓ B0.60n	n						3.90 trial	m. 2) pit b	. Upon completion
				Client B	rookbanks	s / CEG					Log	ged E	By FT

Project							TF	RIAL PIT No
A dastral F lob No	Park, Ipswich, IP1 Date		und Level (m)	Co-Ordinates ()				TP09
GEG-16-458	3 21-09	9-16		E 626,112.7	N 244,79	5.1		
Contractor	·						Shee	
	A	В	С		D			1 of 1
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Λ		<u> </u>		U	1 2 3		Legend
5		STRA	TA	1		<u>5</u> SA	MPLE	S& TESTS
Depth No			DESCRIPTION			Depti		Remarks/Tes
.05-4.00 \\g (ii (gravel-sized metal frag Medium dense) yello s sub-angular to sub-ı KESGRAVE CATCH	gments. wish brown and ora rounded ferrous sar HMENT SUBGRO	ay gravelly medium SA angish brown slightly e dstone. UP) th occasional cobbles	gravelly medium SAN	ID. Gravel	0.50	В	
Shoring/Suppor Stability: Sides 2.50 A	Om →						1. No grencounte	SENERAL EMARKS oundwater ered. 2. Upon on trial pit ed with arisings.
D	B0.60i	m						
]		


								TF	RIAL PIT No
A dastra Job No	al Park, I	pswich, IP1 Date	0 0BL - A	rea 1 Ground Level (m)	Co-Ordinat	tes()			TP10
GEG-16-	458	21-09	9-16			6,160.2 N 244,7	15.1		
Contractor	•							Shee	
									1 of 1
0	A_		В		C	D	0 1 2 2 1 3 1 4		Legend Output Output
5 =				EDA TA			<u>E</u> 5	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Depth No			S	TRATA DESCRIPT	TON		Dept		S & TESTS Remarks/Test
0.00-2.40	MADE occasion quartzite	GROUND - (L nal gravel-size e and flint.	_oose to med d fragments o	ium dense) brown v of concrete, glass an	ery clayey gravelly r d road gravel. Grave	medium SAND with	1.70	D B	
2.40-4.10	is sub-ar (KESGF	ngular to sub-r RAVE CATCH	ounded sand HMENT SUE	stone and ferrous sa	ndstone.	dium SAND. Gravel			
Shoring/Supp	oort: Noi des Stable	ne e						R	ENERAL EMARKS
Stability: Sid								encounte completi	oundwater ered. 2. Upon ion trial pit
•	2.50m — A	B0.60r	m					backfille	ed with arisings.

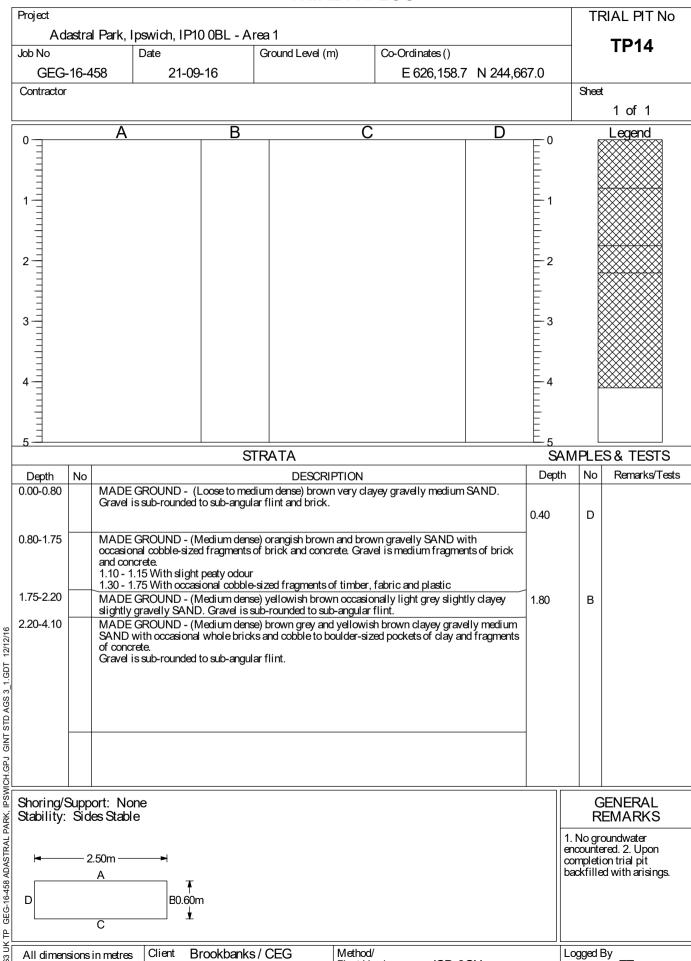
Scale 1:62.5

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

TRIAL PIT LOG

JCB-3CX

Project									-	TRIAL PIT No
A dastral Job No		swich, IP10 (Date		ea 1 Ground Level (n	2)	Co-Ordinates ()				TP12
GEG-16-4		21-09-1		Ground Lever (11	ן	E 625,982.7	N 244 64	15.2		
Contractor	50	21-00-1				L 020,002.1	11 2-1-,0-1	<u>.</u>	She	 eet
										1 of 1
n 	Α		В		С		D	0	'	Legend
0			_		J			1 2 3		
5			CTI	DA TA				<u> </u>	A M DI	EQ 0 TECTO
Depth No			311	RATA DESCRI	DTION			Dep		.ES & TESTS o Remarks/Tests
0.00-0.10 0.10-0.60 0.60-4.00	(REWOR) MADE GI Sub-round MADE GI CLAY with and flint. 3.00 - 3.20	KED TOPSOIL ROUND - (Meded quartzite and ROUND - (Firm th occasional co	.) ^ dum dense) I flint. n) friable gr bbble to bou		gravelly modely and sets of sand	edium SAND. Grave Ity slightly sandy gra I. Gravel is sub-round	/	0.50	E	3
Shoring/Suppo Stability: Side	ort: None es Stable 50m ————————————————————————————————————	B0.60m							1. No encour	GENERAL REMARKS groundwater ntered. 2. Upon etion trial pit Illed with arisings.
All dimensions i Scale 1:62		Client Broo	okbanks/	CEG	Method/ Plant Us	ed JCB-30	CX		Logge	d By


Project										TI	RIAL PIT No
Job No	astra		swich, IP10 Date) 0BL - A	rea 1 Ground Level (n	n)	Co-Ordinates ()			_	TP13
GEG-	16-4		21-09	-16	Orodina Ecvar (II	'')	E 626,164.8	N 244 60	9 1		
Contractor	10		21 00	10			L 020, 104.0	11 2-11,00	70.1	Shee	 xt
											1 of 1
2 3 1 1 1 1 1 1 1 1 1		A		В		C		D	1 2 2		Legend X X X X X X X X X X X X X X X X X X
5				S	FRATA DECOR				5 S		ES & TESTS
Depth 0.00-0.60 0.60-0.90 0.90-4.20	No	MADE G Gravel is: (Medium whole she (WEATH 1,20 - 4,20	KED TOPSC ROUND - (M sub-rounded o dense) bluish Ils. ERED RED (ledum dense quartzite and grey and br CRAG FOR bluish grey v	ownish grey silty: MATION)	with occa	sional rootlets. By fine to medium SA dium SAND with ocuravel is sub-rounded	casional	0.40 0.95	h No D B	Remarks/Tests
Shoring/S Stability:	Supp Sid	ort: None es Stable								R	GENERAL REMARKS
⊢	2	2.50m ————————————————————————————————————	→ B0.60m ¥	1						encount complet	oundwater ered. 2. Upon ion trial pit ed with arisings.
All dimens	sions e 1:6		Client Bi	rookbanks	s/ CEG	Method/ Plant Us		CX		Logged	By FT

Scale 1:62.5

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

TRIAL PIT LOG

JCB-3CX

Project				,					TF	RIAL PIT No
Job No		oswich, IP10 Date	OBL - Ar	ea 1 Ground Level (n	a) C	o-Ordinates()				TP15
GEG-16-4		Date 21-09-	16	Ground Level (n	n) C		1 N 244 6	44.2		
Contractor	100	21-09-	-10			E 626,108.1	I IN 244,0	44.2	Sheet	<u> </u>
Contractor									Griss	1 of 1
2-1	A		В		С		D	-1 -2 -3 -4 -4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		Legend
5 -			QT.	RATA				<u> </u>		S& TESTS
Depth No			31	DESCRI	DTION			Dept		Remarks/Tests
0.00-0.25 0.25-1.30	occasiona (REWOR MADE G	al rootlets. Gra RKED TOPSC	avelis sub-ro NL) Iedium dense	rown slightly gra unded quartzte ar e) brown slightly	velly fine to n nd flint.	nedium SAND wi	,	0.30	D	, and the control of
1.30-4.00	occasiona Gravel is 1.40 - 4.0 clay; and	al gravel to col sub-rounded o 00 With occasi with occasion	oble-sized fra quartzite and onal cobble t al cobble-siz	agments of timbe flint, and sub-an	r, concrete, p gular brick ar bockets of ve fragments.	ine to medium S/ astic, ash and cha nd concrete. ry clayey silt and	arcoal.	1.40	В	
	3.00 - 4.0	00 Becoming b	orownish greg	y very clayey ver	y silty gravell	y with numerous	cobbles.	3.90	D	
5										
Shoring/Supp Stability: Sid	ort: Non es Stable	e							R	SENERAL EMARKS
→ 2	2.50m ————————————————————————————————————	B0.60m	1						3.00m. 2	nd damp from 2. Upon completion backfilled with
All dimensions Scale 1:6		Client Br	ookbanks	/ CEG	Method/ Plant Used	JCB-3	CX		Logged I	By FT

AREA 2

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park	, Ipswich, IP10 0BL - A	Area2		CP17
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP 17
GEG-16-458	21-10-16		E 625,575.5 N 244,933.9	
Contractor	•	•	<u> </u>	Sheet
				1 of 1

SAMPL	ES&T	ESTS	<u></u>					STRA	TA					ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/
0.10	D					0.10	∖gravelly fi ∖sub-round	ROUND - (I ne to mediu ed quartzite ROUND - D AND. Grave	mSAND w	ith occasio	nal rootlets.	slightly Gravel is silty gravelly oncrete.		
1.00	D					_(1.60) _ _	1.00 - 1.70) Becoming	clayey silty	,				
1.50 1.70	D	N10				1.70		Decoming ROUND - (S				dy grayally		
2.00	D					(1.09)	CLAY, G	ravel is fine 9 With nume	to medium	fragmentso	of brick and	l concrete.		
2.80	D					2.79 2.80/	MADEG	ROUND - C	ONORETE	=				-
	ng Prog						1	Chisellino 		Water		GENE		
Date	Time	Depth		Casir epth ∫ I	<u> </u>	Water Dpt	From	То	Hours	From	То	REMA 1. No groundwatencountered. 2. refused due to h	ater Hole	
	I		1											

Project				BOREHOLE No
Adastral Park,	Ipswich, IP10 0BL - A	rea 2		CD476
Job No	Date	Ground Level (m)	Co-Ordinates ()	─ CP17a
GEG-16-458	21-10-16		E 625,582.2 N 244,933.9	
Contractor			·	Sheet
				1 of 1

SAMPLE	_O & 11		Ę		1	Danti		STRA	17				<u>6</u>	ner
Depth	Type No	Test Result	Water	Reduced Level	Legend	11633)				RIPTION			Geology	Instrument/
0.10	D					0.10	MADE GF gravelly fir sub-rounde	ROUND - (l ne to mediu ed quartzite.	m SAŃD w	brown slig with occasion	htly clayey: nal rootlets.	slightly Gravelis		
0.70	D					0.70	∖medium S/	AND. Grave	elisfine fra	agments of b	orick and co	silty gravelly oncrete.		
o o						(0.90)	MADE GF medium to concrete.	ROUND - B coarse SAN	rown sligh ND. Gravel	tly silty slig is fine frag	htly clayey oments of bri	gravelly ck and		
1.50 1.60 1.80	D D	N10				(0.90)	MADE GF Gravel is n	ROUND - F nedium frag	irm slightly ments of bi	silty sandy rick and cor	slightly gra	welly CLAY.		
2.50	D					2.50	MADE GF	ROUND - (I	Medium de	nse) brown	SAND & G	RAVEL of		
3.00		N22				(1.40)	sub-rounde	ed flint, qua	rzite and fr	agments of	concrete.			
3.50	D					3.90	3.50 - 3.90	Becoming	clayey					
3.90	D					(0.40)	MADE GF	ROUND - C	OBBLES	of CONCRE	ETE			
4.30 4.50	D	N23					MADE GF GRAVEL	ROUND - (1 of sub-roun	Medium de ded flint, q	nse) brown uarzite and	clayey SAN fragments c	ID & of concrete.		
5.50	D					(2.00)								
6.00		N17/ 150mm				6.30				_				
6.40	D					6.50	MADE GF	ROUND - C	ONCRETE	Ξ				
						- - - - - - - - - -								
Borir	ng Prog	ress and					(Chisellin	9	Water	Added	GENE		1
Date	Time	Depth	Г	Casin Depth [g Dia.mm	Water Dpt	From	То	Hours	From	То	REMA		
												1. No groundw encountered. 2. refused due to I 3. 50mm stand 6.50m, respond 6.50-1m, bento 1-0.2m, flush o	Hole nard dr pipein ezone nitese	stall al
All dimensi	ions in me	etres C	lient	Broo	kbanks	/ CEG	Meth	nod/				Logged By		

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park	x, Ipswich, IP10 0BL -	Area2		CD40
Job No	Date 25-10-16	Ground Level (m)	Co-Ordinates ()	CP18
GEG-16-458	26-10-16		E 625,636.3 N 245,006.3	
Contractor		•	<u> </u>	Sheet
				1 of 2

SAMPL	ES& TI	ESTS	ъ					STRA	TA				/top
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)				RIPTION			Geology
0.10	D					0.10	gravelly fi sub-round MADE Gr occasional	ROUND - (I ne to mediu ed quartzite ROUND - (I cobble-size agments of	m SAND w : Soft) brown ed fragment	rith occasion	onal rootlets v gravelly (y slightly s. Gravel is CLAY with k. Gravel is	
1.50		N4				(2.90)	1.50 - 2.00) Becoming	very soft to	o soft			
2.00	D					- - - - - - - - - -	2.00 - 3.00) Becoming	(firm) sligh	ntly sandy			
3.00 3.00	D	N22				3.00	SAND with	ROUND - N th occasiona TOPSOIL)	alrelictroot	se dark bro lets.	own slightly	/ clayey medium	
4.00 4.50	D	N9				4.00	CLAY. Gr sub-round	ROUND - (ravel is med ed flint and) Becoming	ium fragme quartzite.	nts of bric	andy slight k, concrete	ly gravelly and	
5.00	D	No				-	4.00 - 0.00	Decorring	3011.011111	. Wildy			
6.00 6.00	D	N7				- - - - - - - - - -	6.00 - 7.00) Becoming	soft				
7.00 7.50	D	N6				- - - - -) Becoming) Becoming		rown sand	V		
						- - -				•	,		
	ing Prog						∤	Chisellin	Ĭ		Added	GENE	
Date	Time	Depth	D	Casin	og Dia. mm	Water Dpt	From	То	Hours	From	То	REMA 1. Groundwater encountered at 9 Hole refused du drilling. 3. 50m installed 15.20r zone 15.20-1m, seal 1-0.2m, flu 0.2-0m.	9.30m. 2 le to hard m standp n, respor bentonit
	nsions in mo	etres C	lient	Broo	kbanks/	/ CEG	Met		able Perc	uggion P	ia	Logged By FT	

PSW	Во	ring Prog	gress and	Water C)bservatio	ons	Chiselling			Water	Added	GENERAL
ARK,	Date	Time	Depth	Cosing Motor				То	Hours	From	То	REMARKS
BH GEG-16-458 ADAS IKAL P												1. Groundwater encountered at 9.30m. 2. Hole refused due to hard drilling. 3. 50mm standpipe installed 15.20m, responce zone 15.20-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

GEG-16-458 ADASTRAL PARK, IPSWICH.GPJ GINT STD AGS 3_1.GDT 12/12/16

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

BOREHOLE LOG

Project	BOREHOLE No				
Adastral Park,	CD40				
Job No	Date 25-10-16	Ground Level (m)	Co-Ordinates ()		CP18
GEG-16-458	26-10-16		E 625,636.3 N 24	45,006.3	
Contractor					Sheet
					2 of 2

								2 0	2 of 2					
SAMPLE	S&T	ESTS	_					STRA	TA					ant/
Depth	Type No	Test Result	Water	Reduce Level	Legend	Depth (Thick- ness)			DESCR	RIPTION			Geology	Instrument/ Backfill
8.00	D					(9.00)	MADE GR CLAY. Gra sub-rounde	avelismedi	ium fragme	nts of brick	andy slightly , concrete a	gravelly and		
9.00 9.00	D	N10					9.00 - 10.5	0 Becomin	g firm light	brown				
10.00 - - - 10.50	D	N8				- - - - -	10 50 - 10	95 With oc	rasional da	rk hrown c	obble-sized	nackets of		
11.00	D	140					very gravel 10.50 - 12.	lysand			55510-34264	podrazoi		
- 12.00 - 12.00	D	N9					12.00 - 13.	00 Becomin	ng firm					
- - - - - - - - - - - - - - - - - - -	D	N50/ 167mm				13.00	very sandy	GRAVEL	of sub-rour	nded flint ar	nd quartzite,	slightly clayey with etal and timber.		
	D					(2.19)								
- 15.00 - 15.00	D	NO/ Omm				15.19	\MADE GF	ROUND - C	ONCRETE	<u> </u>				
Borir	ng Prog	ress and			servatio			Chisellin		Water	Added	GENE	RAL	
Date	Time	Depth	D	Casi)epth ∣	ng Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	۱RKS	;
												1. Groundwate encountered at	r 9.30m	. 2.

Boring Progress and Water Observations

Date Time Depth Depth Dia mm Depth Dia mm Dpt To Hours From To Hours From To Hole refused due to hard drilling. 3. 50mm standpipe installed 15.20m, responce zone 15.20-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

All dimensions in metres Scale 1:50

All dimensions in metres Scale 1:50

All dimensions in metres Scale 1:50

Method/
Plant Used Cable Percussion Rig

Logged By

BOREHOLE LOG

Project	BOREHOLE No			
Adastral Park	CP19			
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP19
GEG-16-458	20-10-16		E 625,526.2 N 244,907.8	
Contractor	•	•		Sheet
				1 of 1

SAMPL	ES& T	ESTS	ሕ				STRATA			ly lent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTIO			Geology Instrument/
0.10	D					0.10	MADE GROUND - (Loose) dark brown ravelly fine to medium SAND with occ ub-rounded quartzite.	casional rootlets. C	Gravelis /	
0.80	D					(1.90)	MADE GROUND - Brown clayey silty incasional gravel to cobble-sized pocket ragments of brick and concrete.	medium gravelly S is of clay. Gravel i	SAND with smedium	
1.50		N10/ 0mm				2.00	.70 - 2.00 Becoming dense with occasion	onal cobbles of co	ncrete	
2.00	D						/IADE GROUND - Brown slightly silty ub-rounded quartzite, flint, brick and co ravel-sized fragments of tarmacadam.	sandy GRAVEL oncrete; with occa	of si onal	
3.00 3.00	D	N45				(3.40)	0.00 - 4.50 Becoming dense			
4.00	D					- (e. 16) 	.00 - 5.40 Becoming very clayey with c nd brick.	occasional cobbles	of concrete	
4.50 4.60	D	N15					.50 - 5.40 Becoming medium dense			
5.39 5.60	D	NO/ 0mm				5.40	MADE GROUND - CONCRETE			
						- - - - - - - - - - - - - - - - - - -				
Bori	ing Prog	ress and	Wa Water	ater Obs	servatio	ons	Chiselling Wa	ater Added	GENE	RAL
Date	Time	Depth		Casin)epth L		Water Dpt	From To Hours From		REMA	
									1. No groundwa encountered. 2. refused due to h 3. 50mm standp 5.60m, respond 5.60-1m, bentor 1-0.2m, flush o	Hole nard drilli pipe instal e zone nite seal
All dimen	cione in m	etres C	lient	Proof	kbanks	/ CEC	Method/		_ogged By	

BOREHOLE LOG

Project					BOREHOLE No
Adastral Park,		CD20			
Job No	Date	Ground Level (m)	Co-Ordinates ()		CP20
GEG-16-458	25-10-16		E 625,563.3 N 245,02	23.9	
Contractor			·	S	heet
					1 of 2

SAMPL	ES& TI	ESTS	<u>т</u>					STRA	TA				>	Instrument/
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/
0.10	D					0.10	gravelly fir sub-rounder MADE GF	ne to mediu ed quartzite ROUND - E v gravelly r	m SAND w	ith occasion	slightly da	s. Gravel is ayey slightly		
1.00	D					- - - - -			clayey silty		avelly			
1.50		N4				(3.40)	1.50 - 3.00	Becoming	very loose	to loose				
2.00	D					-								
3.00 3.00	D	N12				3.50	3.00 - 3.50							
4.00	D					- - - -	MADE GF sub-rounde	ROUND - F ed flint and	irm brown : quartzite.	sandy grav	elly CLAY	. Gravel is		
4.50		N12				(1.50)								
5.00	D					5.00	MADE GF	ROUND - E	rown claye quartzite, a	y gravelly s	SAND. Gra Jular brick a	avel is and concrete.		
						- - - - -								
6.00 6.00	D	N13				-	6.00 - 10.5	0 Becomin	g medium d	ense				
7.00	D					-								
7.50		N11				- - -								
	ing Prog						1	Chiselling	Ī .		Added	GENE		
Date	Time	Depth	D	Casin	g na.mm	Water Dpt	From	То	Hours	From	То	REMA 1. No groundwa encountered. 2. refused due to h 3. 50mm standp. 11m, responce a bentonite seal 1 cover 0.2-0m.	ater Hole hard dr pipe ins zone 1	illi stal
All dimen	sions in mo	etres C	lient	Broo	kbanks	/ CEG	 Meth Plant	nod/ : Used C	able Perc	ussion Pi	a	Logged By FT		=

5	Во	ring Prog	gress and	Water C)bservatio	ons	Chiselling			Water	Added	GENERAL
,	Date	Time	Depth	Ca: Depth	sing ∣Dia.mm	Water Dpt	From	То	Hours	From	То	REMARKS
- C C C C C C C C C C C C C C C C C C C												No groundwater encountered. 2. Hole refused due to hard drilling. 50mm standpipe installed 11m, responce zone 11-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

BOREHOLE LOG

Project					BOREHOLE No
Adastral Park,		CP20			
Job No	Date	Ground Level (m)	Co-Ordinates ()		CP20
GEG-16-458	25-10-16		E 625,563.3 N 245,023	3.9	
Contractor	•				Sheet
					2 of 2

SAMPLE	S & TI	FSTS	<u> </u>					STRA	ΤΔ			2 0	of 2
Depth	Type No	Test	Water	Reduced	Legand	Depth (Thick-		Onv		RIPTION			Geology
8.00	No D	Result	_	Level	Leadin	ness) _ (5.95)	MADE GE	ROUND - F			AND Grav	elis	Q
9.00 9.00	D	N13					sub-rounde (continued	ed flint and	quartzite, ai	nd aub-angi	ular brick ar	el is nd concrete.	
10.00	D					-							
10.50		N6				10.95	10.50 - 11. MADE GF		-				
	ng Prog	ress and		ater Obs Casin		ons Water Dpt	From	Chisellin To	g Hours	Water A	Added To	GENE REMA	RAL
Date	iiile	nebiu		Depth L	Oia.mm	<u>Dpt</u>	riom	10	nours	riom	10	No groundwencountered. 2. refused due to 3. 50mm stand 11m, responce bentonite seal cover 0.2-0m.	ater Hole
All dimensi	ons in mo	etres C	lient	Broo	kbanks	/ CEG	Meth Plant	 nod/		ussion Ri		Logged By	

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park	, Ipswich, IP10 0BL -	Area 2		CP25
Job No	Date	Ground Level (m)	Co-Ordinates ()	GP25
GEG-16-458	18-10-16		E 625,551.8 N 245,110.9	
Contractor	•			Sheet
				1 of 2

SAMPLE			Water	Da-t-		Depth		STRA	IA				Sbc
Depth	Type No	Test Result	W	Reduced Level	Legena	(Thick- ness)				RIPTION			Geology
0.10	О					- 0.10	MADE GF medium to	ROUND - (I ne to mediu ed quartzite ROUND - D ocoarse SAN avel is medi)ark brown ND with oc	slightly cla	yey slightly avel-sized f	/ silty gravelly ragments of	
1.50	_	N4				-	1.50 - 3.00) Becoming	loose				
2.00	D					(4.90)							
3.00	D	N25				-	3.00 - 4.50) Becoming	medium de	nse			
4.00 4.50	D	N9					4.50 - 5.00) Becoming	loose				
5.00	D					5.00		dium SANE ERED RED		RMATION	1)		
5.60 6.00	D	N8				-	6.00 - 7.50) Becoming	loose				
6.50	D					(4.45)							
7.50 7.50	D	N11				-	7.50 - 9.50) Becoming	medium de	nse			
Borin	g Prog	ress and			servatio			Chisellin	9	Water	Added	GENE	
Date 1	Fime	Depth	D	Casir epth I	ng Dia mm	Water Dpt	From	То	Hours	From	То	REMA 1. No groundwencountered. 2 standpipe instaresponce zone bentonite seal a cover 0.2-0m.	rater . 50mm lled 15m
All dimension	onsin me	etres C	lient	Broo	okbanks	/ CEG	Meti Plan	nod/				Logged By	

2	_											· □ ·
5	Bori	ng Prog	ress and	Water C)bservatio	ons	Chiselling			Water	Added	GENERAL
Ź	Date	Time	Depth	Cas Depth	sing ∣Dia.mm	Water Dpt	From	То	Hours	From	То	REMARKS
1 GEG-10-430 AUA OLA SEL												1. No groundwater encountered. 2. 50mm standpipe installed 15m, responce zone 15-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park,	CP25			
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP25
GEG-16-458	18-10-16		E 625,551.8 N 245,110.9	
Contractor			·	Sheet
				2 of 2

SAMPLE			ΤĒ			Donth		STRA	171				€	F
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	/+acm 1.45a
						-	Brown me	dium SAND RED RED	O. CRAGEO	RMATION	J) (continu	ed)		
						-	(***		0.0.0		1) (00/////	<i>-</i>		
8.50	D					- - -								
9.00		N12				-								
9.00		INIZ				0.45								
9.50	D					9.45			ly clayey m	nedium SA	ND with oc	casional shell		
0.00					<u> </u>	-	fragments. (WEATHE	ERED RED	CRAG FO	RMATION	1)			
						_(1.05)	`				,			
					<u> </u>	10.50								
10.50	D	NIEO/				-	Extremely	weak orang	jish brown	SANDSTO	NE with o	casional shell		
10.50		N50/ 213mm				-	fragments. (RED CRA	AG FORM <i>A</i>	ATION)					
						- - -								
						-								
11.50	D					-	11.50 - 15	.45 With nu	merous she	ell fragment	s and whol	e shells		
12.00		N50/				-								
12.00		133mm				-								
12.50	D					-								: : :
12.00						-								
						_(4.95)								
						-								
13.50	D	N50/				-								
13.50		220mm				-								
						-								
44.50						-								
14.50	D					-								
15.00		N50/				-								Ŀ
10.00		180mm				15.45								
						-								1
Roris	na Proc	ress and	1 \ \ / /	atar Oh	convotic	ne		Chiselling		\/\/ater	Added	OFNE	D ^ '	
	Time	Depth		Casin Depth L		Water Dpt	From	To	Hours	From	To	GENE REMA	RKS	;
		Бфи	ט	eptn L	<u>וע. mm</u>	<u>Upt</u>	11011		110010	11011		1. No groundwencountered. 2. standpipe instal responce zone bentonite seal 1 cover 0.2-0m.	ater 50mn	n 5m.
		T -	lient	Broo										

Boring Progress and Water Observations Chiselli	ng Wa	Vater Added	GENERAL
Date Time Depth Casing Water From To	Hours Fro	rom To	REMARKS
SH GEG-16-458 AUAS IKAL P.			1. No groundwater encountered. 2. 50mm standpipe installed 15m, responce zone 15-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park,	CD2C			
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP26
GEG-16-458	24-10-16		E 625,647.3 N 245,079.9	
Contractor			•	Sheet
				1 of 2

SAMPLI	T		Water			Depth	STRATA	<u></u> ≥
Depth	Type No	Test Result	W	Reduced Level	Legena	(Thick- ness)	DESCRIPTION	Geology
0.10	D					0.10	MADE GROUND - (Loose) dark brown slightly dayey slightly gravelly fine to medium SAND with occasional rootlets. Gravel is sub-rounded quartzite. MADE GROUND - Dark brown slightly dayey slightly gravelly	
							medium SAND. Gravel is medium fragments of brick and concrete.	
1.00	D						1.00 - 6.00 With occasional cobble-sized fragments of concrete and brick	
1.50		N10					1.50 - 3.00 Becoming loose to medium dense	
2.00	D							
3.00 3.00	D	N42				(5.90)	3.00 - 4.50 Becoming dense slightly clayey slightly gravelly. Gravel is sub-rounded flint and quartzite	
4.00	D					-		
4.50		N15				-	4.50 - 6.00 Becoming medium dense with occasional cobble-sized fragments of timber and metal	
5.00	D					6.00		
6.00 6.00	D	N12				(0.80)	MADE GROUND- Firm dark brown slightly sandy slightly gravelly CLAY with occasional gravel-sized fragments of metal. Gravel is sub-rounded flint and quartzite, and sub-angular brick and concrete.	
7.00	D						Brown slightly clayey medium SAND with occasional shell fragment (WEATHERED RED CRAG FORMATION)	3.
7.50		N14					7.50 - 12.00 Becoming medium dense	
Borii	ng Prog	ress and	l Wa	ater Ob	servatio	ns	Chiselling Water Added GE	NERAL
Date	Time	Depth			ng Dia.mm	Water Dpt		IARKS
							1. No grour encountered refused due 3. 50mm sta 14m, respon bentonite se cover 0.2-0	l. 2. Hole to hard dril andpipe inst ace zone 14 al 1-0.2m, f
All dimono	ionsin me	etres C	⊥ lient	Broc	kbanks	/ CEG	Method/ Logged By	

В	oring Prog	gress and	Water C)bservatio	ons		Chiselling	9	Water	Added	GENERAL
Date	Time	Depth	Cas Depth	sing Dia.mm	Water Dpt	From	То	Hours	From	То	REMARKS
מו סבסייסי הייהי					·						No groundwater encountered. 2. Hole refused due to hard drilling. Somm standpipe installed 14m, responce zone 14-1m, bentonite seal 1-0.2m, flush cover 0.2-0m.

BOREHOLE LOG

Project				BOREHOLE No
Adastral Park	Ipswich, IP10 0BL - A	Area 2		CDOC
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP26
GEG-16-458	24-10-16		E 625,647.3 N 245,079.9	
Contractor				Sheet
				2 of 2

COLITACIO												Gleat		
SAMPLE	5 & T	FSTS						STRA	ΤΔ			2 (of 2	¥
		Test	Water	Reduced	1	Depth		Oliva					Geology	Instrument/
Depth	Type No	Result	>	Level	Legend	(Thick- ness)				RIPTION			89	Insti
9.00	D					··· · · · · · · · · · · · · · · · · ·	Brown slig (WEATHE	jhtly dayey ERED RED	medium S/ CRAG FC	AND with o	occasional s I) <i>(continue</i>	hell fragments. ed)		
9.00	D	N16				(5.20)								
10.50		N22				- - - - - - - - - -								
11.00	D													
12.00 12.00	D	N50/ 178mm				12.00	Extremely and occasi	weak brow oanl whole AG FORMA	shells.	ONE with	numerous s	hell fragments		
13.00 13.50	D	N50/				-(2.00) - - -								
14.00	D	200mm				14.00								
17.00														
Borir	ng Prog	ress and						Chisellin	g	Water	Added	GENE		
Date	Time	Depth	D	Casir epth [ng Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	;
												1. No groundwencountered. 2 refused due to 3. 50mm stand 14m, responce bentonite seal cover 0.2-0m.	. Hole hard dr	rillir stall 4-1ı , flu
All dimensi Scal	ons in m e 1:50	etres Cl	lient	Broo	kbanks	/ CEG	Meth Plan	nod/ t Used C	able Perc	ussion Ri	g	Logged By F	Γ	

BOREHOLE LOG

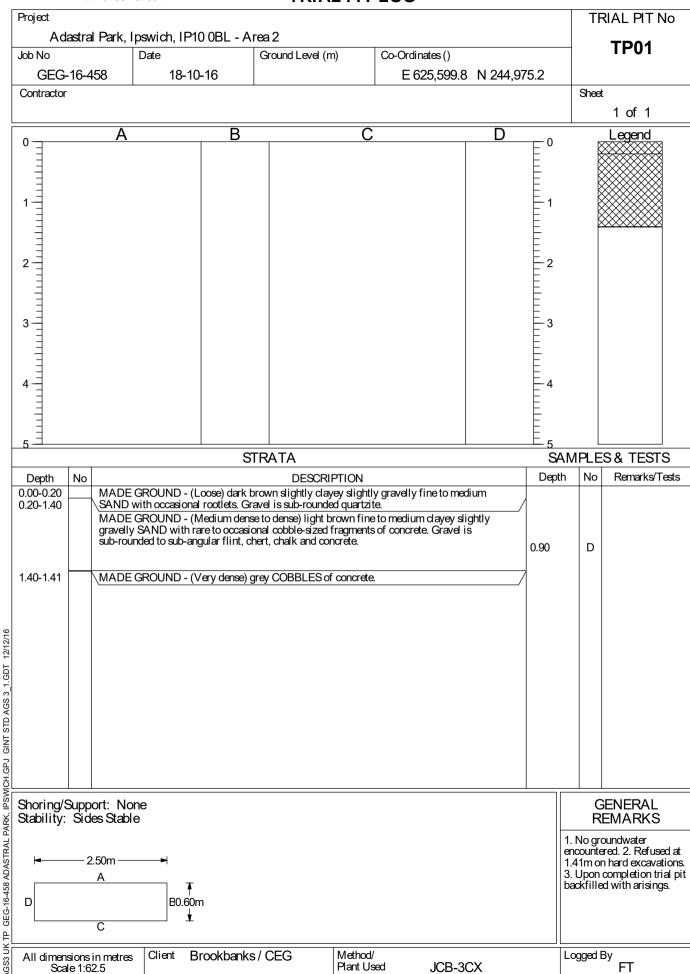
Project				BOREHOLE No
Adastral Park,	Ipswich, IP10 0BL - A	rea 2		CP28
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP20
GEG-16-458	19-10-16		E 625,483.3 N 244,915.4	
Contractor			•	Sheet
				1 of 2

SAMPL	ES&T	ESTS	- T					STRA	TA					ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCF	RIPTION			Geology	Instrument/ Backfill
0.10	D					0.10 (0.40) 0.50	MADE GR gravelly fir sub-rounde	ne to medi u	m SAND w	brown slig vith occasio	jhtly clayey nal rootlets.	slightly Gravel is		
0.50	D					0.50	MADE GR Gravel is m	OUND - D	ark brown	clayey grav	velly medium	m SAND.		
-						- -	MADE GR	OUND - D	ark brown	verv clave	SAND &	GRAVEL of		
E						-	sub-rounde	xd to sub-an	gular flint,	quartzite, b	orick and co	ncrete.		
- 1.50	D					(2.00)	1.50 - 2.50	Recoming	loose					
1.50		N9				-	1.50 - 2.50	Dewning	10030					
<u>_</u>						- - -								
- - -						2.50								
2.50	D					-	MADE GR sub-rounde	OUND - B	rown slight	tly clayey s	andy GRAV	/EL		
						- -			_	·	. C.			
3.00		N26				- [(1.50)	3.00 - 4.00	Becoming	medium de	nse				
3.50	D					- - -								
5.00						4.00								
4.00	D					- 4.00		rown slight	ly clayey m	nedium SAN	ND with occ	casional shell		
-						-	fragments. (WEATHE			RMATION	1)			
4.50		N9			1==	-	4.50 - 6.00	Becoming	loose					
- 5.00	D					-								
ţ						- - -								
- 5.30 -	D					- -								
,						- - -								
6.00		N18				- - -	6.00 - 9.00	Becoming	medium de	nse				
įĘ						- (5.00)								
ο'Γ	D					- (3.23) - -								
- - -						- - -								
j- - - -						- - -								
	D	NAE			+=-	- - -								
7.50 7.50 Bor		N15			[:-::T	-								
	ing Prog	gress and					(Chiselling	3	Water	Added	GENE		
Date	Time	Depth	De	Casır epth I	ng Dia.mm	Water Dpt	From	То	Hours	From	То	REMA		
Date												No groundwa encountered. 2. standpipe instal responce zone 1 bentonite seal 1 cover 0.2-0m.	50mm led 15 15-1m,	m,

Boring Progress and Water Observations Date Time Depth Depth Dia. mm Depth Depth Dia. mm Dia.	≃ ເ												
1. No groundwater encountered. 2. 50mm standpipe installed 15m, responce zone 15-1m, bentonite seal 1-0.2m, flus	PSW	Bo	ring Prog	gress and	Water C	Observatio	ons	(Chiselling	3	Water	Added	GENERAL
1. No groundwater encountered. 2. 50mm standpipe installed 15m, responce zone 15-1m, bentonite seal 1-0.2m, flus	AKK,	Date	Time	Depth	Ca: Depth	sing Dia.mm	Water Dpt	From	То	Hours	From	То	REMARKS
	4 GEG-16-458 ADAS IRAL F												encountered. 2. 50mm standpipe installed 15m, responce zone 15-1m, bentonite seal 1-0.2m, flush

AGS3 UK BH Method/ Plant Used All dimensions in metres Scale 1:50 Brookbanks / CEG Client Logged By FT Cable Percussion Rig

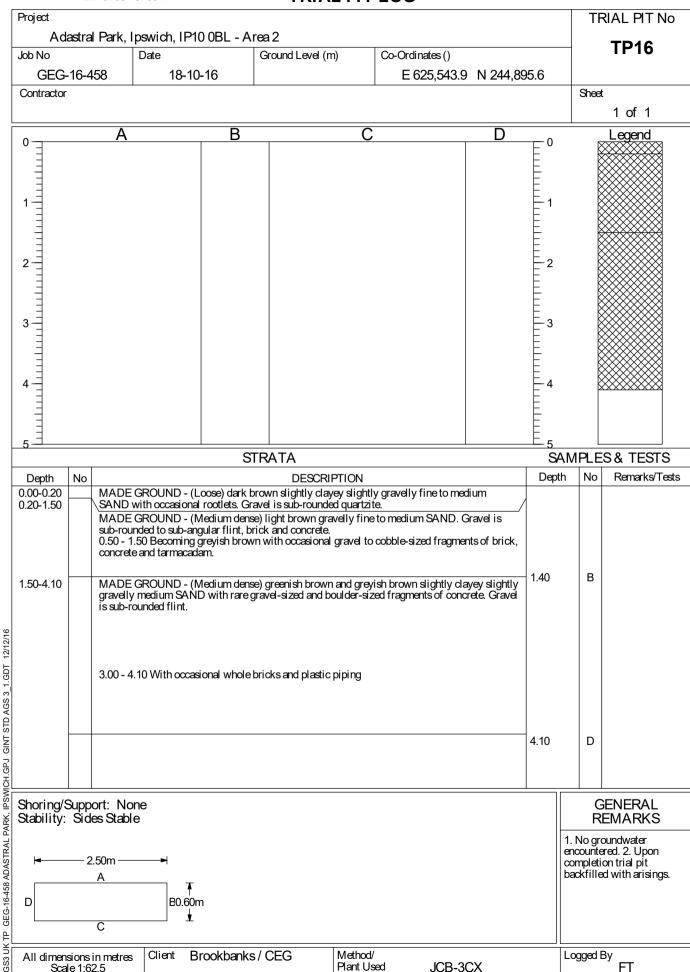
BOREHOLE LOG


Project				BOREHOLE No
Adastral Park	, Ipswich, IP10 0BL -	Area2		CD20
Job No	Date	Ground Level (m)	Co-Ordinates ()	CP28
GEG-16-458	19-10-16		E 625,483.3 N 244,915.4	
Contractor	•	•	·	Sheet
				2 of 2

COLLIACIO												3166		
												2 0	of 2	
SAMPLE	ES&T	ESTS						STRA	TA					aut/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			Geology	Instrument/ Backfill
8.50	D					-	fragments.	•			ND with occa			
8.70	D				<u> </u>	9.00	8.70 - 9.00	Becoming	coarse with	n no clay, a	nd with nume	erous shell		目
9.00		N50/ 287mm				9.00	Fxtremely	weak oran	gish brown	SANDSTO	NE with occ	asional whole		
10.50 10.50	D	N50/ 210mm	1 1			-								
11.00	D					- - - - - -								
12.00 12.00	D	N50/ 176mm				(6.45)								
13.50		N50/ 222mm	<u>‡</u>			- - - - - - - - - - - - -								
15.00 15.00	D	N50/ 235mm				15.45	15.00 - 15.	.45 Becomi	ng weak					
	na Proc	ress and	1 /// t	ater Oh	servatio	ons	<u> </u>	Chisellin	n	Water	Added	GENE	<u></u>	
	Time	Depth			ng Dia.mm		From	To	Hours	From	To	REMA	RKS	
		БФП	ע ן	repin L	a. mm <u>.</u> ار	⊥ ⊔pt	170111	70	113010			1. No groundwa encountered. 2. standpipe insta	ater 50mm	

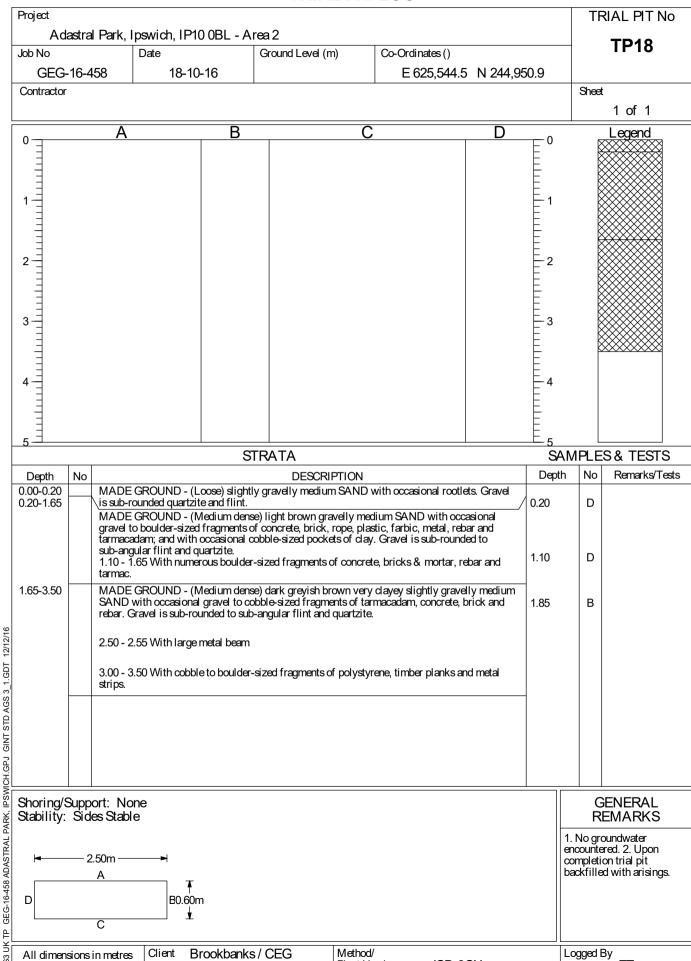
ICH.GPJ GINT STD AGS 3_1.GDT_12/12/16	15.00 15.00	D	N50/ 235mm	=		15.45	15.00 - 15.	45 Becomi	ng weak					
, IPSWICH	Во	ring Prog	ress and		Observatio		(Chisellin	g	Water	Added	GENE		
PARK,	Date	Time	Depth	Depth Ca	sing ∣Dia.mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
BH GEG-16-458 ADASTRAL F						·						1. No groundwa encountered. 2. standpipe instal responce zone of bentonite seal 1 cover 0.2-0m.	led 15m	n, Tush
AGS3 UK		nsions in m cale 1:50	etres	lient Bro	ookbanks	/ CEG	Meth Plant		able Perc	ussion Ri	g	Logged By FT	-	

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917



Project					•						Т	RIAL PIT No
Job No GEG-1			Date 18-10		rea 2 Ground Level (n	n)	Co-Ordi	•	3 N 245,04	13.4		TP02
Contractor			1 12 12								Shee	1 of 1
0		A		В		C			D			Legend
5 -				S	 TRATA					<u>上</u> 5 S/	AMPLE	ES& TESTS
Depth 1 0.00-0.20 0.20-2.50	No	MADE SAND MADE occasi	E GROUND - (L) with occasional E GROUND - (Monal gravel-sized	oose) dark b rootlets. Gr ledium dens fragments d	DESCRI prown slightly clay avel is sub-rounde pe) brown slightly of tile. Gravel is m	ey slightly d quartzit	/ gravelly e. ne to med gments of	fine to med lium SANE brick and	dium O with concrete.	Dept	h No	Remarks/Tests
2.50-3.50		MADE gravel	E GROUND - (M sized fragments	ledium dens of tarmacad	e) greyish brown lam. Gravel is med	gravelly m dium fragn	nedium SA nents of b	AND with r	are nocrete.	2.70	B	
Shoring/Su Stability: Stability:		.50m — A	one ble B0.60n	1							1. No grencount complet	GENERAL REMARKS roundwater ered. 2. Upon ion trial pit ed with arisings.
All dimension			s Client Bi	rookbanks	s/ CEG	Method/ Plant Us		JCB-3	CX		Logged	By FT

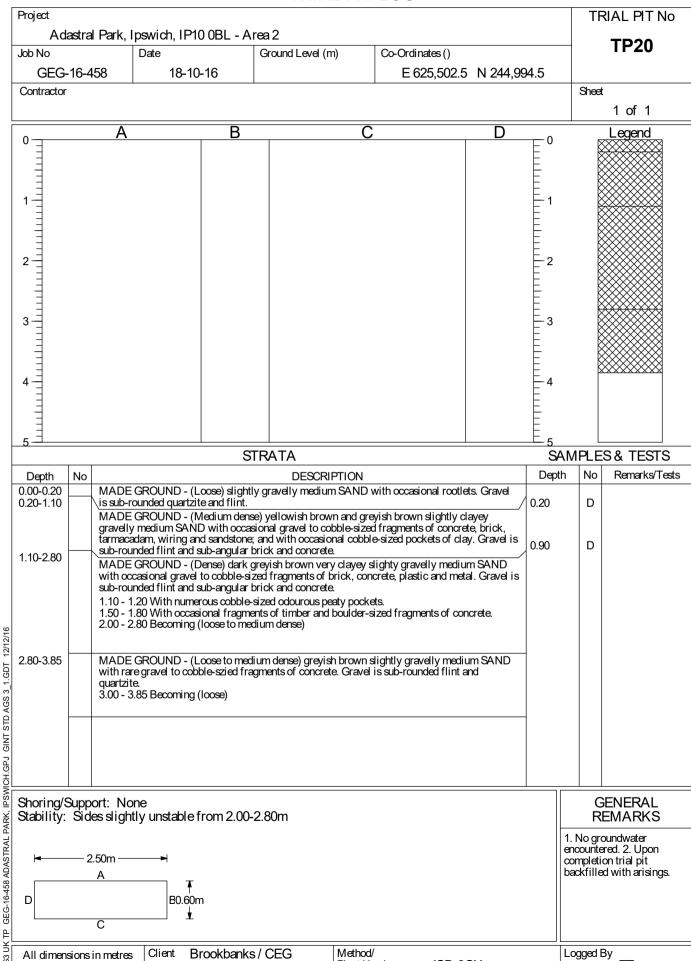
Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917



Project									TRIAL PIT No
Adastral Pa	k, Ipswich, IP1	0 0BL - A	rea 2						TP17
Job No	Date		Ground Level (r	n) C	o-Ordinates()				IP17
GEG-16-458	18-10)-16			E 625,478.3	N 244,8	76.1		
Contractor								St	neet
									1 of 1
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	A	В		С		D	2		Legend
5 = 1							<u> </u>		
3		S	TRATA				S	AMP	LES & TESTS
Depth No			DESCRI				Dept	h N	lo Remarks/Tests
0.20-0.90 iss \(\frac{\(\begin{array}{c} \(\text{FI}\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	DE GROUND - (I vel-sized fragments rtzite, brick and co .DE GROUND - (\) ble-sized fragment rtzite, brick and co 1.70 Becoming adium dense) orang EATHERED RED 3.50 Becoming 3.60 Becoming	te and flint. Medium dens sof tarmacaoncrete. Very dense) be sof brick and oncrete. dark greyish gish brown m CRAG FOR (dense) sligh	be) light brown gradam. Gravel is sull brown very gravel d concrete. Gravel brown with occasedium to coarse S MATION)	evelly mediun o-rounded to ly medium S is sub-round sional timber SAND.	n SAND with occ sub-angular flint, o AND with numero ded to sub-angular fragments	esional chert,	2.30	ı	В
Shoring/Support: Stability: Sides S	None able								GENERAL REMARKS
D C	B0.60r	m Brookbanks	s/ CEG	Method/				encou	groundwater Intered. 2. Upon letion trial pit illed with arisings.
Scale 1:62.5				Plant Used	JCB-30	CX			´ FT

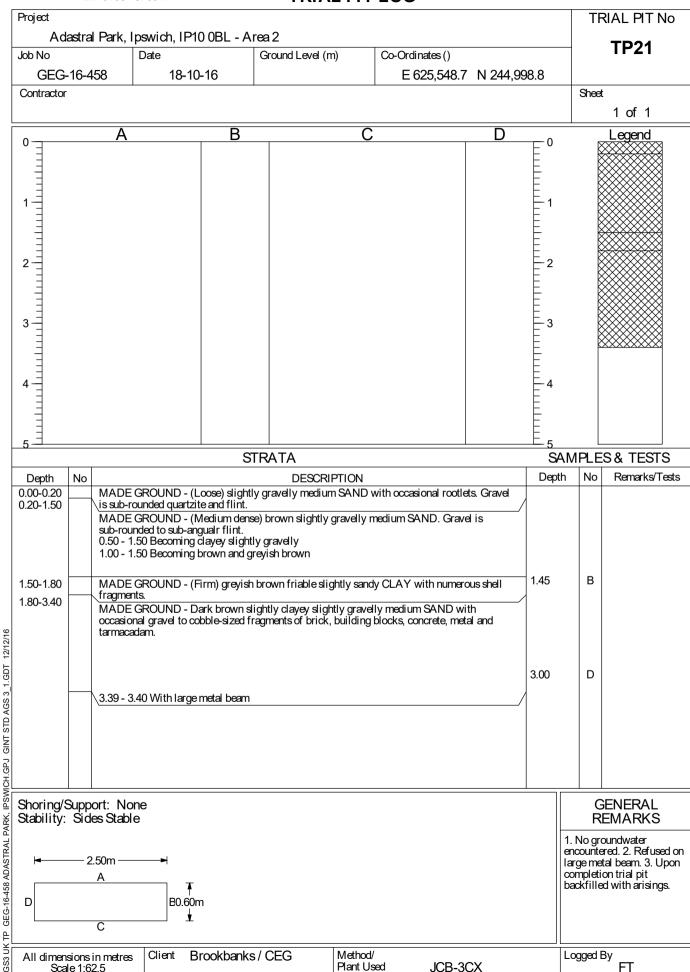
Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

TRIAL PIT LOG

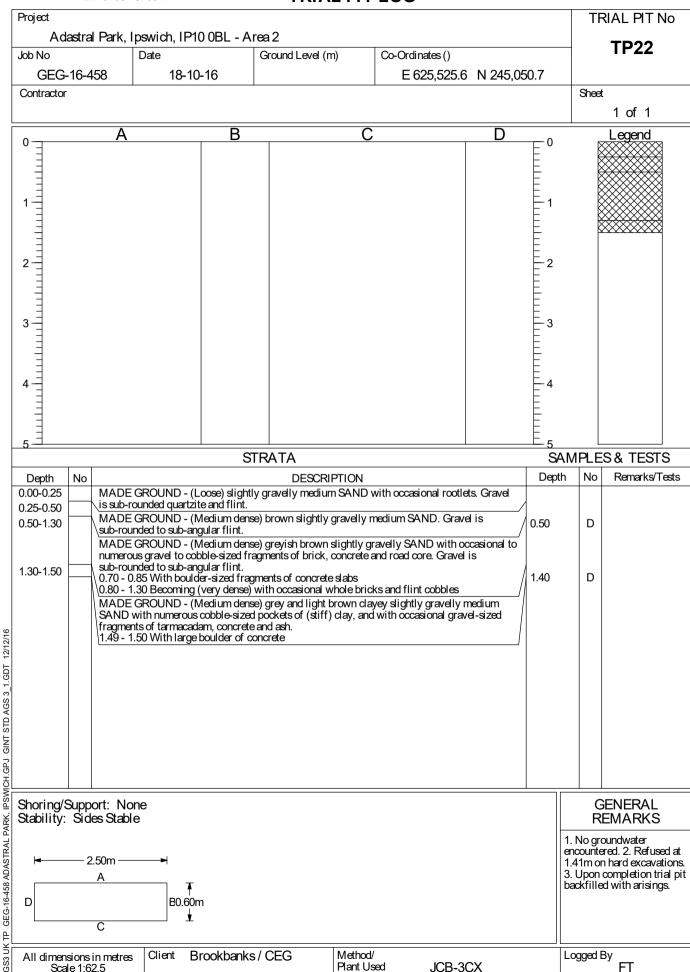


JCB-3CX

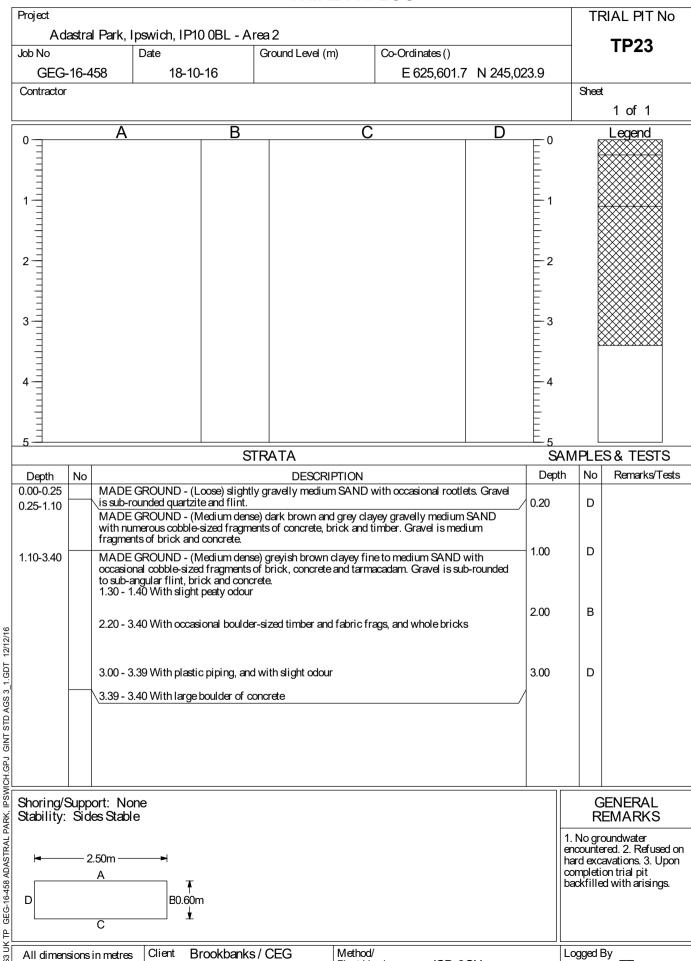
Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917


TRIAL PIT LOG

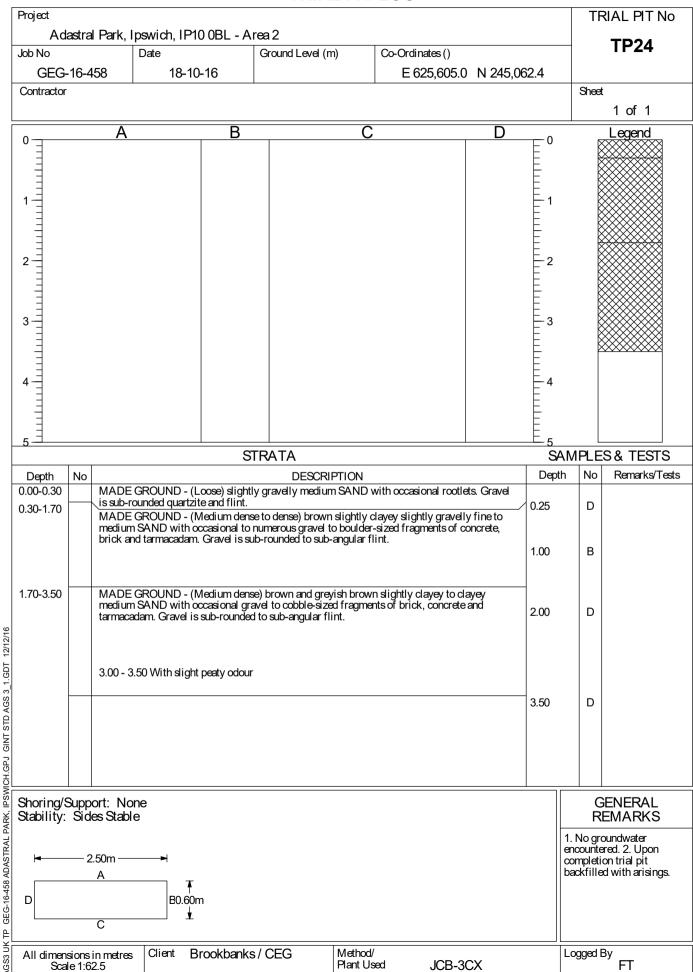
JCB-3CX



Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917


Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917

Geo Environmental Group GEG House, 17 Graham Road Malvern, WR14 2HR Telephone: 01684 212526 Fax: 01684 576917


TRIAL PIT LOG

Plant Used

JCB-3CX

Project											TF	RIAL PIT No
Job No			Date		rea 2 Ground Level (n	n)	Co-Ordin		N 04= /-	20.4		TP25
GEG-	16-4	58	18-10	-16			E 62	25,584.9	N 245,10)3.1	Shee	<u> </u>
CONTRACTO											Silec	1 of 1
2		A		В		С			D	1 2 2 2 4		Legend
5 =				ST	 FRATA					<u>E</u> 5	MPI F	S& TESTS
Depth	No			- 01	DESCRI	PTION				Dept		Remarks/Tests
0.00-0.30 0.30-2.00 2.00-2.30 2.30-3.40		MADI mediu 1.50 - MADI mediu MADI SAND	Lis sub-rounded of E GROUND - (Norm SAND). Grave 2.00 Becoming of E GROUND - (First fragments of control of E GROUND - (Norm Fragments)	quartzite and fedium dens i is fine fragr clayey to very irm) greyish thalk, brick a fedium dens ounded flint	e) light brown slig ments of brick. y clayey silty to vo brown silty sandy and concrete. e) greyish brown and quartzite, and	ghtly claye ery silty w / slightly c clayey silt	ay slightly of ith occasion gravelly CL	gravelly find onal shell fra .AY. Grave gravelly mea	eto egments lis	0.95	B	
Shoring/S Stability:		ort: Nes Stat	one ole B0.60n	n							1. No grencounte	GENERAL EMARKS oundwater ored. 2. Upon on trial pit ad with arisings.
All dimens		in metre	Client B	rookbanks	/ CEG	Method/ Plant Us	ed	JCB-3C	X		Logged	By FT

APPENDIX D

CHEMICAL ANALYSIS RESULTS

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 603058-1

Date of Report: 04-Oct-2016

Customer: Geo Environmental Group

17 Graham Road

Malvern

Worcestershire WR14 2HR

Customer Contact: Mr Matthew Perks

Customer Job Reference: GEG-16-458

Customer Purchase Order: 2296

Customer Site Reference: Adastral Park, Ipswich

Date Job Received at SAL: 28-Sep-2016
Date Analysis Started: 28-Sep-2016
Date Analysis Completed: 04-Oct-2016

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Aleksandra Pacula Project Manager Issued by : Aleksandra Pacula Project Manager

Project Site: Adastral Park, Ipswich Customer Reference: GEG-16-458

Analysed as Soil

MCERTS Preparation

Soil

			SA	L Reference	603058 001	603058 003	603058 005	603058 006	603058 007	603058 009	603058 011	603058 013
		Custon	ner Sampl	e Reference	TP03	TP04	TP05	TP05	TP06	TP07	TP08	TP09
			Во	ottom Depth	0.30	0.30	0.45	1.85	0.60	0.30	0.60	0.50
			Da	ate Sampled	22-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016	21-SEP-2016	22-SEP-2016	21-SEP-2016
	Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil			
Determinand	Method	Test Sample	LOD	Units								
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	7.3	8.7	4.0	6.9	3.7	6.2	8.1	2.0

SAL Reference: 603058

Project Site: Adastral Park, Ipswich Customer Reference: GEG-16-458

Analysed as Soil

MCERTS Preparation

MOLITIOTTEPARAGON											
			SA	L Reference	603058 015	603058 017	603058 019	603058 021	603058 023	603058 025	603058 027
		Custon	ner Sampl	e Reference	TP10	TP11	TP12	TP13	TP14	TP15	WS06
			В	ottom Depth	0.30	0.30	0.50	0.40	0.40	0.30	0.10
			Da	ate Sampled	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	23-SEP-2016
				Туре	Sandy Soil						
Determinand	Method	Test Sample	LOD	Units		1,000				N.O.	
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	11	8.8	5.7	6.6	7.8	6.6	4.2

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Analysed as Soil

Soil

			SA	L Reference	603058 001	603058 002	603058 003	603058 004	603058 005	603058 006	603058 007	603058 008
		Custor	ner Sampl	e Reference	TP03	TP03	TP04	TP04	TP05	TP05	TP06	TP06
			В	ottom Depth	0.30	1.60	0.30	0.95	0.45	1.85	0.60	1.30
			D	ate Sampled	22-SEP-2016	22-SEP-2016	21-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016
				Туре	Sandy Soil		Sandy Soil		Sandy Soil	Sandy Soil	Sandy Soil	
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	4	-	13	-	3	13	7	-
Boron (water-soluble)	T6	AR	1	mg/kg	<1	-	<1	-	<1	<1	<1	-
Cadmium	T6	M40	1	mg/kg	<1	-	<1	-	<1	<1	<1	-
Chromium	T6	M40	1	mg/kg	7	-	19	-	9	18	12	•
Chromium (trivalent)	T85	AR	2	mg/kg	7	-	19	-	9	18	12	•
Chromium VI	T6	AR	1	mg/kg	<1	-	<1	-	<1	<1	<1	-
Copper	T6	M40	1	mg/kg	12	-	13	-	3	23	5	-
Cyanide(Total)	T4	AR	1	mg/kg	<1	- 100	<1		<1	<1	<1	-
Cyanide(free)	T4	AR	1	mg/kg	<1	-14/4/	<1	3-13-	<1	<1	<1	-
Lead	T6	M40	1	mg/kg	20	_	14		6	21	14	-
Mercury	T6	M40	1	mg/kg	1	-	<1		<1	1	2	-
Nickel	T6	M40	1	mg/kg	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26		5	15	7	-
pН	T7	AR			7.3	-	7.3	<u> - </u>	6.6	8.2	8.1	•
Phenols(Mono)	T4	AR	1	mg/kg	<1		<1	-	<1	<1	<1	•
Selenium	T6	M40	3	mg/kg	<3	- C-20-	<3	-	<3	<3	<3	-
Soil Organic Matter	T287	M40	0.1	%	2.9	V 00	0.5		0.7	0.7	0.7	•
SO4(Total)	T6	M40	0.01	%	0.04		0.03		<0.01	0.05	0.02	•
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	3.43	<10		<10	<10	<10	-
Zinc	T6	M40	1	mg/kg	29		44	913.4G	13	57	23	-
TPH (C10-C12)	T8	M105	1	mg/kg	<1	_	<1	THE DESIGNATION OF THE PERSON	<1	<1	<1	-
TPH (C12-C16)	T8	M105	1	mg/kg	<1		<1	- 1	<1	<1	<1	-
TPH (C16-C21)	T8	M105	1	mg/kg	<1		<1		1	3	<1	-
TPH (C21-C35)	T8	M105	1	mg/kg	5		<1		3	26	2	-
TPH (C35-C40)	T8	M105	1	mg/kg	<1		<1		<1	37	<1	-
TPH (C6-C8)	T54	AR	100	μg/kg	<100	- H	<100	-	<100	<100	<100	-
TPH (C8-C10)	T8	M105	1	mg/kg	<1	41.172	<1		<1	<1	<1	-
					10 H 21 P T							

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

			SA	L Reference	603058 009	603058 010	603058 011	603058 012	603058 013	603058 014	603058 015	603058 016
		Custor	ner Sampl	le Reference	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10
			В	ottom Depth	0.30	1.60	0.60	1.60	0.50	1.40	0.30	1.70
			D	ate Sampled	21-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016
				Туре	Sandy Soil		Sandy Soil		Sandy Soil		Sandy Soil	
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	4	-	6	-	11	-	14	-
Boron (water-soluble)	T6	AR	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Cadmium	T6	M40	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Chromium	T6	M40	1	mg/kg	8	-	8	-	12	-	19	-
Chromium (trivalent)	T85	AR	2	mg/kg	8	-	8	-	12	-	19	-
Chromium VI	T6	AR	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Copper	T6	M40	1	mg/kg	18	-	14	-	2	-	21	-
Cyanide(Total)	T4	AR	1	mg/kg	<1	- 100	<1	9-2 -	<1	-	<1	-
Cyanide(free)	T4	AR	1	mg/kg	<1	-	<1		<1	-	<1	-
Lead	T6	M40	1	mg/kg	26	_	21		7	-	66	-
Mercury	T6	M40	1	mg/kg	<1	-	<1		<1	-	1	-
Nickel	T6	M40	1	mg/kg	5		5		7	-	15	-
pН	T7	AR		1000	7.4		8.0	4	6.8	-	8.3	-
Phenols(Mono)	T4	AR	1	mg/kg	<1		<1	-	<1	-	<1	-
Selenium	T6	M40	3	mg/kg	<3		<3	-	<3	-	<3	-
Soil Organic Matter	T287	M40	0.1	%	4.0	- C	2.7	10 10 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12	0.1	-	1.3	-
SO4(Total)	T6	M40	0.01	%	0.05	TA THE	0.04	15-4-	0.03	-	0.10	-
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.2
Sulphide	T4	AR	10	mg/kg	<10		<10		<10	-	<10	-
Zinc	T6	M40	1	mg/kg	41	- 197	36		17	-	77	-
TPH (C10-C12)	T8	M105	1	mg/kg	<1		<1	THE BOAR	<1	-	<1	-
TPH (C12-C16)	T8	M105	1	mg/kg	<1		<1		<1	-	<1	-
TPH (C16-C21)	T8	M105	1	mg/kg	1	000	<1		1	-	5	-
TPH (C21-C35)	T8	M105	1	mg/kg	7	F-11-11	5		16	14° -	39	-
TPH (C35-C40)	T8	M105	1	mg/kg	<1		2		2	-	19	-
TPH (C6-C8)	T54	AR	100	μg/kg	<100	S. 179-34 13	<100		<100	-	<100	-
TPH (C8-C10)	T8	M105	1	mg/kg	<1	41.75	<1		<1	-	<1	-
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	8	-	7		19	A	63	-

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil

Analysed as Soil

					1	1	ı	1		1		ı
				L Reference	603058 017	603058 018	603058 019	603058 020	603058 021	603058 022	603058 023	603058 024
		Custon	ner Sampl	e Reference	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14
			В	ottom Depth	0.30	1.10	0.50	1.00	0.40	0.95	0.40	1.80
			D	ate Sampled	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016
				Туре	Sandy Soil		Sandy Soil		Sandy Soil		Sandy Soil	
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	12	-	3	-	15	-	11	-
Boron (water-soluble)	T6	AR	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Cadmium	T6	M40	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Chromium	T6	M40	1	mg/kg	19	-	9	-	17	-	15	-
Chromium (trivalent)	T85	AR	2	mg/kg	19	-	9	-	17	-	15	-
Chromium VI	T6	AR	1	mg/kg	<1	-	<1	-	<1	-	<1	-
Copper	T6	M40	1	mg/kg	44	-	4	-	43	-	19	-
Cyanide(Total)	T4	AR	1	mg/kg	<1	- 1/3	<1		<1	-	<1	-
Cyanide(free)	T4	AR	1	mg/kg	<1	- 10.12	<1	-	<1	-	<1	-
Lead	T6	M40	1	mg/kg	260	<u> </u>	9		69	-	50	-
Mercury	T6	M40	1	mg/kg	<1	-	<1	- L	1	-	<1	-
Nickel	T6	M40	1	mg/kg	16	0.84.2	7	7. Table	16	-	14	-
pН	T7	AR			8.1	-	6.9	<u> -</u>	8.1	-	8.1	-
Phenols(Mono)	T4	AR	1	mg/kg	<1		<1	<u>-</u>	<1	-	<1	-
Selenium	T6	M40	3	mg/kg	<3		<3	-	<3	-	<3	-
Soil Organic Matter	T287	M40	0.1	%	2.7	V 00	0.6	10 (10 Table 1)	1.6	-	1.6	-
SO4(Total)	T6	M40	0.01	%	0.06		0.01	1	0.06	-	0.12	-
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	100	<10	- 115 - 115	<10	-	<10	-
Zinc	T6	M40	1	mg/kg	110	W. 151	18	97(3)-101-	92	-	79	-
TPH (C10-C12)	Т8	M105	1	mg/kg	<1	<u>-</u>	<1	THE DESIGNATION OF THE PERSON	<1	-	<1	-
TPH (C12-C16)	T8	M105	1	mg/kg	<1		<1		<1	-	1	-
TPH (C16-C21)	T8	M105	1	mg/kg	17	-12-1	<1		5	-	23	-
TPH (C21-C35)	T8	M105	1	mg/kg	83	F-11-12	<1	<u> -</u>	40	W -	82	-
TPH (C35-C40)	T8	M105	1	mg/kg	15		<1		19	-	20	-
TPH (C6-C8)	T54	AR	100	μg/kg	<100	3 TO . H	<100		<100	-	<100	-
TPH (C8-C10)	Т8	M105	1	mg/kg	<1		<1		<1	-	<1	-
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	120	-	<1	100	64		130	-

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

			SA	L Reference	603058 025	603058 026	603058 027
		Custon	ner Sampl	le Reference	TP15	TP15	WS06
			В	ottom Depth	0.30	1.40	0.10
			D	ate Sampled	21-SEP-2016	21-SEP-2016	23-SEP-2016
				Туре	Sandy Soil		Sandy Soil
Determinand	Method	Test Sample	LOD	Units			
Arsenic	T6	M40	2	mg/kg	8	-	11
Boron (water-soluble)	T6	AR	1	mg/kg	<1	-	<1
Cadmium	T6	M40	1	mg/kg	<1	-	<1
Chromium	T6	M40	1	mg/kg	13	-	15
Chromium (trivalent)	T85	AR	2	mg/kg	13	-	15
Chromium VI	T6	AR	1	mg/kg	<1	-	<1
Copper	T6	M40	1	mg/kg	22	-	15
Cyanide(Total)	T4	AR	1	mg/kg	<1	- 103	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	-1400	<1
Lead	T6	M40	1	mg/kg	70		36
Mercury	T6	M40	1	mg/kg	<1	-	<1
Nickel	T6	M40	1	mg/kg	11	100	13
рН	T7	AR		1000	7.6		8.1
Phenols(Mono)	T4	AR	1	mg/kg	<1		<1
Selenium	T6	M40	3	mg/kg	<3	Contract of	<3
Soil Organic Matter	T287	M40	0.1	%	2.3	V	8.7
SO4(Total)	T6	M40	0.01	%	0.05		0.08
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	10 July 20	100
Zinc	T6	M40	1	mg/kg	66	EXT. FEE	56
TPH (C10-C12)	T8	M105	1	mg/kg	<1	1000	⁽⁹⁾ <10
TPH (C12-C16)	T8	M105	1	mg/kg	<1		⁽⁹⁾ <10
TPH (C16-C21)	Т8	M105	1	mg/kg	8		⁽⁹⁾ <10
TPH (C21-C35)	Т8	M105	1	mg/kg	39		220
TPH (C35-C40)	T8	M105	1	mg/kg	12		380
TPH (C6-C8)	T54	AR	100	μg/kg	<100	X173.31	(110) < 200
TPH (C8-C10)	T8	M105	1	mg/kg	<1		⁽⁹⁾ <10
TPH C6-C40 (Sum)	T85	M105	1	ma/ka	59		600

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

					222252 224						222252 244	000050 040
				L Reference	603058 001	603058 003	603058 005	603058 006	603058 007	603058 009	603058 011	603058 013
		Custon	ner Samp	e Reference	TP03	TP04	TP05	TP05	TP06	TP07	TP08	TP09
			В	ottom Depth	0.30	0.30	0.45	1.85	0.60	0.30	0.60	0.50
			D	ate Sampled	22-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016	21-SEP-2016	22-SEP-2016	21-SEP-2016
				Туре	Sandy Soil							
Determinand	Method	Test Sample	LOD	Units								
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1

SAL Reference: 603058

Project Site: Adastral Park, Ipswich
Customer Reference: GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

			SA	L Reference	603058 015	603058 017	603058 019	603058 021	603058 023	603058 025	603058 027
		Custon	ner Sampl	le Reference	TP10	TP11	TP12	TP13	TP14	TP15	WS06
			В	ottom Depth	0.30	0.30	0.50	0.40	0.40	0.30	0.10
			D	ate Sampled	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	23-SEP-2016
				Туре	Sandy Soil						
Determinand	Method	Test Sample	LOD	Units		6					
Naphthalene	T207	M105	0.1	mg/kg	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	⁽⁹⁾ <1.0
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⁽⁹⁾ <1.0
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1	0.2	⁽⁹⁾ <1.0
Fluorene	T207	M105	0.1	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1	0.2	⁽⁹⁾ <1.0
Phenanthrene	T207	M105	0.1	mg/kg	0.5	1.8	<0.1	0.3	0.5	2.1	1.4
Anthracene	T207	M105	0.1	mg/kg	0.1	0.4	<0.1	<0.1	0.3	0.5	⁽⁹⁾ <1.0
Fluoranthene	T207	M105	0.1	mg/kg	1.2	2.6	<0.1	1.1	1.7	3.1	4.1
Pyrene	T207	M105	0.1	mg/kg	1.1	2.2	<0.1	1.0	1.6	2.7	3.8
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.6	1.6	<0.1	0.7	1.0	1.6	2.3
Chrysene	T207	M105	0.1	mg/kg	0.6	1.5	<0.1	0.6	0.9	1.4	2.6
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	0.6	1.7	<0.1	0.8	1.6	1.8	2.8
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	0.4	0.9	<0.1	0.5	0.5	1.0	2.0
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.5	1.4	<0.1	0.6	1.1	1.5	2.6
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	0.3	0.8	<0.1	0.4	0.6	0.9	1.6
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	0.2	<0.1	<0.1	0.1	0.2	⁽⁹⁾ <1.0
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	0.4	0.8	<0.1	0.5	0.7	1.0	2.2
PAH(total)	T207	M105	0.1	mg/kg	6.3	17	<0.1	6.5	11	18	25

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	603058 001	603058 002	603058 003	603058 004	603058 005	603058 006	603058 007	603058 008
		Custor	ner Samp	le Reference	TP03	TP03	TP04	TP04	TP05	TP05	TP06	TP06
			В	ottom Depth	0.30	1.60	0.30	0.95	0.45	1.85	0.60	1.30
			D	ate Sampled	22-SEP-2016	22-SEP-2016	21-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016	22-SEP-2016
				Туре	Sandy Soil		Sandy Soil		Sandy Soil	Sandy Soil	Sandy Soil	
Determinand	Method	Test Sample	LOD	Units								
pН	T7	A40			-	7.2	-	7.3	-	7.5	-	9.3
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID	T27	AR			N.D.	-	N.D.	-	N.D.	N.D.	N.D.	-
Antimony	T6	A40	1	mg/kg	<1	-	2	-	<1	-	<1	-
(Water soluble) Mg	T251	AR	1	ma/l	-	6	-	<1	_	2	-	1

SAL Reference: 603058

Project Site: Adastral Park, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	603058 009	603058 010	603058 011	603058 012	603058 013	603058 014	603058 015	603058 016
		Custon	ner Sampl	e Reference	TP07	TP07	TP08	TP08	TP09	TP09	TP10	TP10
			В	ottom Depth	0.30	1.60	0.60	1.60	0.50	1.40	0.30	1.70
			D	ate Sampled	21-SEP-2016	21-SEP-2016	22-SEP-2016	22-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016	21-SEP-2016
				Туре	Sandy Soil		Sandy Soil		Sandy Soil		Sandy Soil	
Determinand	Method	Test Sample	LOD	Units					37.	P		
pН	T7	A40		NAME OF		9.9		8.1		6.1	-	7.9
SO4(2:1)	Т6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.2
Asbestos ID	T27	AR			N.D.		N.D.		N.D.	-	N.D.	-
Antimony	T6	A40	1	mg/kg	<1		<1	-	2	(A) -	1	-
(Water soluble) Mg	T251	AR	1	mg/l	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1		2		2	-	6

SAL Reference: 603058

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	603058 017	603058 018	603058 019	603058 020	603058 021	603058 022	603058 023	603058 024
		Custor	ner Samp	le Reference	TP11	TP11	TP12	TP12	TP13	TP13	TP14	TP14
			В	ottom Depth	0.30	1.10	0.50	1.00	0.40	0.95	0.40	1.80
			D	ate Sampled	21-SEP-2016							
				Туре	Sandy Soil		Sandy Soil		Sandy Soil		Sandy Soil	
Determinand	Method	Test Sample	LOD	Units								
pH	T7	A40			-	7.9	-	7.6	-	8.1	-	8.0
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Asbestos ID	T27	AR			N.D.	-	N.D.	-	N.D.	-	N.D.	-
Antimony	T6	A40	1	mg/kg	3	-	<1	-	2	-	1	-
(Water soluble) Mg	T251	AR	1	mg/l	-	2	-	2	-	3	-	2

SAL Reference: 603058 Project Site: Adastral Park, Ipswich Customer Reference: GEG-16-458 Soil Analysed as Soil Miscellaneous SAL Reference 603058 025 603058 026 603058 027 **Customer Sample Reference** TP15 TP15 WS06 **Bottom Depth** 0.30 0.10 Date Sampled 21-SEP-2016 21-SEP-2016 23-SEP-2016 Type Sandy Soil Sandy Soil Test Sample Determinand Method LOD Units A40 SO4(2:1) M40 0.1 <0.1 Т6 <0.1 g/l < 0.1 T27 N.D. N.D. Antimony T6 A40 mg/kg (Water soluble) Mg T251 AR mg/l

Index to symbols used in 603058-1

Value	Description
AR	As Received
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
A40	Assisted dried < 40C
N.D.	Not Detected
110	LOD raised due to low internal standard recovery.
9	LOD raised due to dilution of sample
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Asbestos was subcontracted to REC Asbestos.

Method Index

Value	Description
T287	Calc TOC/0.58
T8	GC/FID
T207	GC/MS (MCERTS)
T162	Grav (1 Dec) (105 C)
T4	Colorimetry
T6	ICP/OES
T27	PLM
T85	Calc
T251	2:1 Extraction/ICP/OES
T2	Grav
T7	Probe
T54	GC/MS (Headspace)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
pH	T7	A40			U	002,004,006,008,010,012,014,016,018,020,022,024,026
Asbestos ID	T27	AR			SU	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Antimony	T6	A40	1	mg/kg	U	001,003,005,007,009,011,013,015,017,019,021,023,025,027
(Water soluble) Mg	T251	AR	1	mg/l	N	002,004,006,008,010,012,014,016,018,020,022,024,026
Arsenic	T6	M40	2	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Boron (water-soluble)	T6	AR	1	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Cadmium	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Chromium	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Chromium (trivalent)	T85	AR	2	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Chromium VI	T6	AR	1	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Copper	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Cyanide(Total)	T4	AR	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Cyanide(free)	T4	AR	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Lead	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Mercury	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Nickel	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
pH	T7	AR			М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Phenols(Mono)	T4	AR	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Selenium	T6	M40	3	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Soil Organic Matter	T287	M40	0.1	%	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
SO4(Total)	T6	M40	0.01	%	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
SO4(2:1)	T6	M40	0.1	g/l	N	001-027
Sulphide	T4	AR	10	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Zinc	T6	M40	1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C10-C12)	T8	M105	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C12-C16)	T8	M105	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C16-C21)	T8	M105	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C21-C35)	T8	M105	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C35-C40)	T8	M105	1	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C6-C8)	T54	AR	100	μg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH (C8-C10)	T8	M105	1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Naphthalene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Acenaphthylene	T207	M105	0.1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Acenaphthene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Fluorene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Phenanthrene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Anthracene	T207	M105	0.1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Fluoranthene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Pyrene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Chrysene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	М	001,003,005-007,009,011,013,015,017,019,021,023,025,027
PAH(total)	T207	M105	0.1	mg/kg	U	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Retained on 10mm sieve	T2	M40	0.1	%	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027
Moisture @105C	T162	AR	0.1	%	N	001,003,005-007,009,011,013,015,017,019,021,023,025,027

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 604634-1

Date of Report: 10-Oct-2016

Customer: Geo Environmental Group

17 Graham Road

Malvern

Worcestershire WR14 2HR

Customer Contact: Mr Matthew Perks

Customer Job Reference: GEG-16-458

Customer Purchase Order: 2296

Customer Site Reference: Adastral Park, Ipswich

Date Job Received at SAL: 28-Sep-2016
Date Analysis Started: 04-Oct-2016
Date Analysis Completed: 10-Oct-2016

The results reported relate to samples received in the laboratory and may not be representative of a whole batch

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Aleksandra Pacula Project Manager Issued by : Aleksandra Pacula Project Manager

Peulo

SAL	Reference:	604634								
F	Project Site:	Adastral F	Adastral Park, Ipswich							
Customer	Reference:	GEG-16-4	458							
Soil Analysed as Soil Miscellaneous										
			SA	L Reference	604634 001					
		Customer Sample Reference WS06								
			Da	ate Sampled	23-SEP-2016					
Determinand	Method	Test Sample	LOD	Units						
pH	T7	A40			7.2					
SO4(2:1)	T6	AR	0.1	g/l	<0.1					
(Water soluble) Mg	T251	AR	1	ma/l	<1					

Index to symbols used in 604634-1

Value	Description
A40	Assisted dried < 40C
AR	As Received
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T6	ICP/OES
T7	Probe
T251	2:1 Extraction/ICP/OES

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
рН	T7	A40	1800		U	001
SO4(2:1)	T6	AR	0.1	g/l	N	001
(Water soluble) Mg	T251	AR	1	mg/l	N	001

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 608749-1

Date of Report: 27-Oct-2016

Customer: Geo Environmental Group

17 Graham Road

Malvern

Worcestershire WR14 2HR

Customer Contact: Mr Matthew Perks

Customer Job Reference: GEG-16-458

Customer Purchase Order: 2337

Customer Site Reference: Adastral Oark, Ipswich

Date Job Received at SAL: 20-Oct-2016

Date Analysis Started: 21-Oct-2016

Date Analysis Completed: 27-Oct-2016

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Aleksandra Pacula Project Manager Issued by : Aleksandra Pacula Project Manager

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

MCERTS Preparation

			SA	L Reference	608749 001	608749 002	608749 003	608749 004	608749 005	608749 006	608749 007	608749 008
Customer Sample Reference					TP01	TP02	TP02	TP02	TP16	TP16	TP17	TP17
Bottom Depth					0.90	0.20	1.30	2.70	1.40	4.10	0.80	2.30
Date Sampled					18-OCT-2016							
				Туре	Sandy Soil	Clay	Sandy Soil	Sandy Soil				
Determinand	LOD	Units										
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	8.8	6.4	7.0	10	10	19	6.6	5.5

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

MCERTS Preparation

	L Reference	608749 009	608749 010	608749 011	608749 012	608749 013	608749 014	608749 015	608749 016			
		Custor	ner Sampl	e Reference	TP18	TP18	TP18	TP20	TP20	TP21	TP21	TP22
Bottom Depth					0.20	1.10	1.85	0.20	0.90	1.45	3.00	0.50
	Date Sampled					18-OCT-2016						
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Clay	Sandy Soil	Sandy Soil
Determinand	LOD	Units		No.								
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	5.6	8.2	9.4	6.5	11	28	13	10

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

MCERTS Preparation

								4.500	A-10-30-30-30-30-30-30-30-30-30-30-30-30-30			
	SAL Reference						608749 019	608749 020	608749 021	608749 022	608749 024	608749 025
		Custon	ner Sampl	e Reference	TP22	TP23	TP23	TP23	TP24	TP24	TP24	TP25
	Bottom Depth					0.20	1.00	3.00	0.25	1.00	3.50	0.95
Date Sampled					18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil				
Determinand Method Test Sample LOD Units						All						
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	13	7.1	18	12	12	14	24	13

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil
MCERTS Preparation

Analysed as Soil

Determinand	Method	Test Sample	LOD	Units	
Retained on 10mm sieve	T2	M40	0.1	%	<0.1
Moisture @105C	T162	AR	0.1	%	13

Project Site: Adastral Oark, Ipswich Customer Reference: GEG-16-458

Soil Analysed as Soil

GEG Suite 4

SAL Reference					608749 001	608749 003	608749 005	608749 010	608749 013	608749 014	608749 015	608749 019
Customer Sample Reference					TP01	TP02	TP16	TP18	TP20	TP21	TP21	TP23
Bottom Depth					0.90	1.30	1.40	1.10	0.90	1.45	3.00	1.00
Date Sampled					18-OCT-2016							
Туре					Sandy Soil	Clay	Sandy Soil	Sandy Soil				
Determinand	Method	Test Sample	LOD	Units								
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Analysed as Soil Soil

GEG Suite 4										
	SAL Reference									
	TP24	TP25								
	2.00	0.95								
	18-OCT-2016	18-OCT-2016								
				Туре	Clay	Sandy Soil				
Determinand	Method	Test Sample	LOD	Units						
pH	T7	A40			7.7					
SO4(2:1)	Т6	M40	0.1	a/l	-0.1	-0.1				

Project Site: Adastral Oark, Ipswich **Customer Reference:** GEG-16-458

Soil

Analysed as Soil

SAL Reference					608749 001	608749 002	608749 003	608749 004	608749 005	608749 006	608749 007	608749 008
Customer Sample Reference					TP01	TP02	TP02	TP02	TP16	TP16	TP17	TP17
Bottom Depth					0.90	0.20	1.30	2.70	1.40	4.10	0.80	2.30
Date Sampled					18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016
Туре					Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Clay	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	12	33	11	9	9	7	16	16
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	17	52	12	14	14	10	21	20
Chromium (trivalent)	T85	AR	2	mg/kg	17	52	12	14	14	10	21	20
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Copper	T6	M40	1	mg/kg	24	15	14	15	15	13	40	53
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Lead	T6	M40	1	mg/kg	53	28	41	25	35	37	55	360
Mercury	T6	M40	1	mg/kg	<1	1	<1	<1	<1	<1	<1	1
Nickel	T6	M40	1	mg/kg	17	22	13	10	12	9	23	17
pH	T7	AR			8.0	7.8	7.5	7.6	7.9	7.7	8.0	7.2
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3
Soil Organic Matter	T287	M40	0.1	%	1.4	2.3	2.5	1.4	2.7	0.9	2.3	0.4
SO4(Total)	T6	M40	0.01	%	0.04	0.04	0.06	0.04	0.06	0.03	0.15	0.03
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	<10	<10	32	<10	<10	100	<10
Zinc	T6	M40	1	mg/kg	88	77	84	46	50	53	88	370
TPH (C10-C12)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	⁽¹³⁾ <1
TPH (C12-C16)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) 3	⁽¹³⁾ <1	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C16-C21)	T8	M105	1	mg/kg	(13) <1	(13) 7	⁽¹³⁾ 14	⁽¹³⁾ 1	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ 1	⁽¹³⁾ <1
TPH (C21-C35)	Т8	M105	1	mg/kg	(13) 5	⁽¹³⁾ 31	(13) 80	(13) 8	(13) 4	(13) <1	⁽¹³⁾ 13	⁽¹³⁾ <1
TPH (C35-C40)	T8	M105	1	mg/kg	(13) 2	(13) 9	⁽¹³⁾ 31	⁽¹³⁾ 6	(13) 3	⁽¹³⁾ 1	⁽¹³⁾ 6	⁽¹³⁾ <1
TPH (C6-C8)	T54	AR	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	(13) 7	(13) 47	⁽¹³⁾ 130	⁽¹³⁾ 15	(13) 7	⁽¹³⁾ 1	⁽¹³⁾ 20	⁽¹³⁾ <1

Project Site: Adastral Oark, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

GEG Suite 2

			SA	L Reference	608749 009	608749 010	608749 011	608749 012	608749 013	608749 014	608749 015	608749 016
		Custon	ner Sampl	e Reference	TP18	TP18	TP18	TP20	TP20	TP21	TP21	TP22
			В	ottom Depth	0.20	1.10	1.85	0.20	0.90	1.45	3.00	0.50
			Da	ate Sampled	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Clay	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	19	9	7	18	10	8	15	12
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	41	9	11	19	16	13	10	16
Chromium (trivalent)	T85	AR	2	mg/kg	41	9	11	19	16	13	10	16
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Copper	T6	M40	1	mg/kg	57	6	16	14	15	12	7	27
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	1	<1	<1	<1	<1	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Lead	T6	M40	1	mg/kg	13	10	36	42	55	26	10	130
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	1
Nickel	T6	M40	1	mg/kg	35	8	9	16	12	10	13	13
pН	T7	AR			7.1	7.8	7.9	7.8	7.8	7.9	7.5	8.0
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3
Soil Organic Matter	T287	M40	0.1	%	2.3	2.7	1.0	4.0	0.6	0.6	5.7	5.5
SO4(Total)	T6	M40	0.01	%	0.04	0.12	0.06	0.06	0.02	0.05	0.21	0.16
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10
Zinc	T6	M40	1	mg/kg	81	22	67	65	94	44	30	140
TPH (C10-C12)	Т8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1
TPH (C12-C16)	T8	M105	1	mg/kg	(13) <1	(13) <1	⁽¹³⁾ 2	(13) <1	⁽¹³⁾ <1	(13) <1	⁽¹³⁾ 15	⁽¹³⁾ 1
TPH (C16-C21)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) 7	(13) 7	(13) <1	(13) <1	⁽¹³⁾ 100	⁽¹³⁾ 6
TPH (C21-C35)	T8	M105	1	mg/kg	⁽¹³⁾ 15	(13) 2	⁽¹³⁾ 51	(13) 41	(13) <1	(13) 4	⁽¹³⁾ 280	(13) 39
TPH (C35-C40)	T8	M105	1	mg/kg	(13) 4	(13) 3	(13) 44	(13) 9	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ 45	⁽¹³⁾ 17
TPH (C6-C8)	T54	AR	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH C6-C40 (Sum)	T85	M105	1	ma/ka	(13) 19	(13) 5	(13) 04	(13) 47	(13) _1	(13) ₄	(13) 440	(13) 63

Project Site: Adastral Oark, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

GEG Suite 2

			SA	L Reference	608749 017	608749 018	608749 019	608749 020	608749 021	608749 022	608749 024	608749 025
		Custon	ner Sampl	e Reference	TP22	TP23	TP23	TP23	TP24	TP24	TP24	TP25
			В	ottom Depth	1.40	0.20	1.00	3.00	0.25	1.00	3.50	0.95
			D	ate Sampled	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units								
Arsenic	T6	M40	2	mg/kg	6	13	10	12	36	10	<2	5
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	19	15	15	18	56	20	160	32
Chromium (trivalent)	T85	AR	2	mg/kg	19	15	15	18	56	20	160	32
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Copper	T6	M40	1	mg/kg	17	14	15	27	15	15	54	53
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Lead	T6	M40	1	mg/kg	12	27	26	100	31	27	6	25
Mercury	T6	M40	1	mg/kg	1	1	1	<1	1	<1	2	<1
Nickel	T6	M40	1	mg/kg	13	13	13	17	24	17	210	36
pН	T7	AR		1000	7.9	8.1	7.9	8.5	7.6	7.7	8.1	8.1
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3
Soil Organic Matter	T287	M40	0.1	%	1.7	2.8	1.5	1.5	3.7	2.6	2.1	0.9
SO4(Total)	T6	M40	0.01	%	0.07	0.08	0.06	0.11	0.06	0.06	0.09	0.02
SO4(2:1)	T6	M40	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	110	<10	<10	53	<10	<10	33	<10
Zinc	T6	M40	1	mg/kg	38	52	50	110	85	51	85	110
TPH (C10-C12)	Т8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	⁽¹³⁾ <1
TPH (C12-C16)	T8	M105	1	mg/kg	⁽¹³⁾ 1	⁽¹³⁾ 1	(13) 3	(13) 3	(13) <1	(13) <1	(13) 4	⁽¹³⁾ <1
TPH (C16-C21)	T8	M105	1	mg/kg	(13) 8	(13) 9	(13) 29	⁽¹³⁾ 10	(13) 5	(13) 2	⁽¹³⁾ 15	⁽¹³⁾ <1
TPH (C21-C35)	T8	M105	1	mg/kg	(13) 54	⁽¹³⁾ 100	⁽¹³⁾ 110	(13) 35	(13) 85	⁽¹³⁾ 14	⁽¹³⁾ 67	(13) 2
TPH (C35-C40)	Т8	M105	1	mg/kg	⁽¹³⁾ 15	(13) 44	(13) 28	⁽¹³⁾ 14	⁽¹³⁾ 25	(13) 8	⁽¹³⁾ 22	⁽¹³⁾ <1
TPH (C6-C8)	T54	AR	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10)	T8	M105	1	mg/kg	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	(13) 78	⁽¹³⁾ 150	⁽¹³⁾ 170	(13) 62	⁽¹³⁾ 120	(13) 24	⁽¹³⁾ 110	(13) ₂

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil GEG Suite 2 Analysed as Soil

SAL Reference	608749 026
Customer Sample Reference	TP25
Bottom Depth	3.40
Date Sampled	18-OCT-2016
Туре	Sandy Soil

				Туре	Sandy Soil
Determinand	Method	Test Sample	LOD	Units	
Arsenic	T6	M40	2	mg/kg	<2
Boron (water-soluble)	T6	AR	1	mg/kg	<1
Cadmium	T6	M40	1	mg/kg	<1
Chromium	T6	M40	1	mg/kg	31
Chromium (trivalent)	T85	AR	2	mg/kg	31
Chromium VI	T6	AR	1	mg/kg	<1
Copper	T6	M40	1	mg/kg	68
Cyanide(Total)	T4	AR	1	mg/kg	<1
Cyanide(free)	T4	AR	1	mg/kg	<1
Lead	T6	M40	1	mg/kg	19
Mercury	T6	M40	1	mg/kg	2
Nickel	T6	M40	1	mg/kg	31
pН	T7	AR			7.9
Phenols(Mono)	T4	AR	1	mg/kg	<1
Selenium	T6	M40	3	mg/kg	<3
Soil Organic Matter	T287	M40	0.1	%	1.6
SO4(Total)	T6	M40	0.01	%	0.05
SO4(2:1)	T6	M40	0.1	g/l	<0.1
Sulphide	T4	AR	10	mg/kg	<10
Zinc	T6	M40	1	mg/kg	130
TPH (C10-C12)	T8	M105	1	mg/kg	(13) <1
TPH (C12-C16)	T8	M105	1	mg/kg	(13) 1
TPH (C16-C21)	T8	M105	1	mg/kg	(13) 5
TPH (C21-C35)	Т8	M105	1	mg/kg	(13) 30
TPH (C35-C40)	Т8	M105	1	mg/kg	(13) 8
TPH (C6-C8)	T54	AR	0.10	mg/kg	<0.10
TPH (C8-C10)	Т8	M105	1	mg/kg	(13) <1
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	(13) 44

Project Site: Adastral Oark, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

	SAL Reference					608749 002	608749 003	608749 004	608749 005	608749 006	608749 007	608749 008
		Custon	ner Sampl	e Reference	TP01	TP02	TP02	TP02	TP16	TP16	TP17	TP17
			В	ottom Depth	0.90	0.20	1.30	2.70	1.40	4.10	0.80	2.30
			D	ate Sampled	18-OCT-2016							
				Туре	Sandy Soil	Clay	Sandy Soil	Sandy Soil				
Determinand	Method	Test Sample	LOD	Units								
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	1.1	0.5	<0.1	<0.1	<0.1	0.3	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	0.3	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	2.5	1.1	0.1	<0.1	<0.1	0.7	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	2.5	1.0	0.1	<0.1	<0.1	0.6	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	1.3	0.6	<0.1	<0.1	<0.1	0.4	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	1.3	0.6	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	1.9	0.8	<0.1	<0.1	<0.1	0.5	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	0.9	0.5	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	1.4	0.6	<0.1	<0.1	<0.1	0.4	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	1.0	0.4	<0.1	<0.1	<0.1	0.3	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	0.3	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	1.1	0.4	<0.1	<0.1	<0.1	0.3	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	16	6.8	0.3	<0.1	<0.1	3.9	<0.1

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich
Customer Reference: GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

	SAL Reference					608749 010	608749 011	608749 012	608749 013	608749 014	608749 015	608749 016
		Custon	ner Sampl	e Reference	TP18	TP18	TP18	TP20	TP20	TP21	TP21	TP22
			В	ottom Depth	0.20	1.10	1.85	0.20	0.90	1.45	3.00	0.50
			D	ate Sampled	18-OCT-2016	18-OCT-2016						
				Туре	Sandy Soil	Clay	Sandy Soil	Sandy Soil				
Determinand	Method	Test Sample	LOD	Units		6						
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⁽⁹⁾ <1.0	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	4.0	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⁽⁹⁾ <1.0	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.3	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.0	<0.1	<0.1	28	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	5.6	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	0.2	0.3	<0.1	1.7	<0.1	<0.1	40	0.1
Pyrene	T207	M105	0.1	mg/kg	0.2	0.3	<0.1	1.5	<0.1	<0.1	36	0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.1	0.2	<0.1	0.7	<0.1	<0.1	18	<0.1
Chrysene	T207	M105	0.1	mg/kg	0.1	0.2	<0.1	0.7	<0.1	<0.1	23	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	0.2	0.2	<0.1	0.9	<0.1	<0.1	25	0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	0.2	<0.1	0.5	<0.1	<0.1	14	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.1	0.1	<0.1	0.7	<0.1	<0.1	20	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	0.1	<0.1	0.4	<0.1	<0.1	14	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	4.5	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	0.1	<0.1	0.5	<0.1	<0.1	14	<0.1
PAH(total)	T207	M105	0.1	mg/kg	1.0	1.7	<0.1	9.1	<0.1	<0.1	250	0.4

Project Site: Adastral Oark, Ipswich **Customer Reference:** GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

			SA	L Reference	608749 017	608749 018	608749 019	608749 020	608749 021	608749 022	608749 024	608749 025
		Custon	ner Sampl	e Reference	TP22	TP23	TP23	TP23	TP24	TP24	TP24	TP25
			В	ottom Depth	1.40	0.20	1.00	3.00	0.25	1.00	3.50	0.95
			D	ate Sampled	18-OCT-2016							
				Туре	Sandy Soil							
Determinand	Method	Test Sample	LOD	Units								
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	0.4	0.3	0.9	0.2	0.1	<0.1	0.3	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	0.7	1.3	2.6	0.9	0.4	0.2	1.8	<0.1
Pyrene	T207	M105	0.1	mg/kg	0.6	1.2	2.5	0.9	0.4	0.2	2.0	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.3	0.8	1.5	0.5	0.2	<0.1	1.2	<0.1
Chrysene	T207	M105	0.1	mg/kg	0.3	0.6	1.3	0.4	0.2	<0.1	1.0	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	0.4	1.1	2.2	0.5	0.3	<0.1	1.6	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	0.2	0.4	1.1	0.3	0.1	<0.1	0.6	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.3	0.7	1.6	0.4	0.2	<0.1	1.0	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	0.2	0.5	1.1	0.2	0.1	<0.1	0.5	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	0.2	0.4	0.1	<0.1	<0.1	0.2	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	0.2	0.5	1.2	0.3	0.1	<0.1	0.5	<0.1
PAH(total)	T207	M105	0.1	mg/kg	3.5	7.7	17	4.7	2.3	0.3	11	<0.1

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich
Customer Reference: GEG-16-458

Soil Analysed as Soil

GEG PAH (USEPA 16)

			SA	L Reference	608749 026
		Custon	ner Samp	le Reference	TP25
			В	ottom Depth	3.40
			D	ate Sampled	18-OCT-2016
				Туре	Sandy Soil
Determinand	Method	Test Sample	LOD	Units	
Naphthalene	T207	M105	0.1	mg/kg	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	608749 001	608749 002	608749 003	608749 004	608749 005	608749 006	608749 007	608749 008
	ner Sampl	e Reference	TP01	TP02	TP02	TP02	TP16	TP16	TP17	TP17		
		В	ottom Depth	0.90	0.20	1.30	2.70	1.40	4.10	0.80	2.30	
			Da	ate Sampled	18-OCT-2016							
		Туре	Sandy Soil	Clay	Sandy Soil	Sandy Soil						
Determinand	Method	Test Sample	LOD	Units								
Asbestos ID	T27	AR			N.D.							
(Water soluble) Mg	T251	AR	1	mg/l	3	-	5	-	6	-	-	-

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

Miscellaneous

			SA	L Reference	608749 009	608749 010	608749 011	608749 012	608749 013	608749 014	608749 015	608749 016
	ner Sampl	e Reference	TP18	TP18	TP18	TP20	TP20	TP21	TP21	TP22		
	В	ottom Depth	0.20	1.10	1.85	0.20	0.90	1.45	3.00	0.50		
			Da	ate Sampled	18-OCT-2016							
		Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Clay	Sandy Soil	Sandy Soil		
Determinand	Method	Test Sample	LOD	Units								
Asbestos ID	T27	AR			N.D.							
(Water soluble) Mg	/ater soluble) Mg T251 AR 1 mg/l					3			5	3	-	-

SAL Reference: 608749

Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

Miscellaneous

					ALC: THE PARTY OF	40.50		4.00	01-24020			
			SA	L Reference	608749 017	608749 018	608749 019	608749 020	608749 021	608749 022	608749 023	608749 024
	Customer Sample Reference						TP23	TP23	TP24	TP24	TP24	TP24
			В	ottom Depth	1.40	0.20	1.00	3.00	0.25	1.00	2.00	3.50
			Da	ate Sampled	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016	18-OCT-2016
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Clay	Sandy Soil
Determinand	Method	Test Sample	LOD	Units		All						
Asbestos ID	T27	AR			N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	-	N.D.
(Water soluble) Mg	T251	AR	1	mg/l	-		5		-	-	7	-

SAL Reference: 608749
Project Site: Adastral Oark, Ipswich

Customer Reference: GEG-16-458

Soil Analysed as Soil

Miscellaneous

		SA	L Reference	608749 025	608749 026
	Custon	ner Sampl	e Reference	TP25	TP25
		В	ottom Depth	0.95	3.40
		Da	ate Sampled	18-OCT-2016	18-OCT-2016
•	•		Туре	Sandy Soil	Sandy Soil
	Toot				

Determinand	Method	Test Sample	LOD	Units		
Asbestos ID	T27	AR			N.D.	N.D.
(Water soluble) Mg	T251	AR	1	mg/l	3	-

Index to symbols used in 608749-1

Value	Description
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
A40	Assisted dried < 40C
AR	As Received
N.D.	Not Detected
9	LOD raised due to dilution of sample
13	Results have been blank corrected.
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Asbestos was subcontracted to REC Asbestos.

Method Index

Value	Description
T287	Calc TOC/0.58
T27	PLM
T54	GC/MS (Headspace)
T85	Calc
T8	GC/FID
T207	GC/MS (MCERTS)
T6	ICP/OES
T7	Probe
T162	Grav (1 Dec) (105 C)
T4	Colorimetry
T251	2:1 Extraction/ICP/OES
T2	Grav

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Asbestos ID	T27	AR			SU	001-022,024-026
(Water soluble) Mg	T251	AR	1	mg/l	N	001,003,005,010,013-014,019,023,025
Arsenic	T6	M40	2	mg/kg	М	001-022,024-026
Boron (water-soluble)	T6	AR	1	mg/kg	N	001-022,024-026
Cadmium	T6	M40	1	mg/kg	М	001-022,024-026
Chromium	T6	M40	1	mg/kg	М	001-022,024-026
Chromium (trivalent)	T85	AR	2	mg/kg	N	001-022,024-026
Chromium VI	T6	AR	1	mg/kg	N	001-022,024-026
Copper	T6	M40	1	mg/kg	М	001-022,024-026
Cyanide(Total)	T4	AR	1	mg/kg	U	001-022,024-026
Cyanide(free)	T4	AR	1	mg/kg	U	001-022,024-026
Lead	T6	M40	1	mg/kg	М	001-022,024-026
Mercury	T6	M40	1	mg/kg	М	001-022,024-026
Nickel	T6	M40	1	mg/kg	М	001-022,024-026
pH	T7	AR			М	001-022,024-026
Phenols(Mono)	T4	AR	1	mg/kg	U	001-022,024-026
Selenium	T6	M40	3	mg/kg	М	001-022,024-026
Soil Organic Matter	T287	M40	0.1	%	N	001-022,024-026
SO4(Total)	T6	M40	0.01	%	N	001-022,024-026
SO4(2:1)	T6	M40	0.1	g/l	N	001-026
Sulphide	T4	AR	10	mg/kg	N	001-022,024-026
Zinc	T6	M40	1	mg/kg	М	001-022,024-026
TPH (C10-C12)	T8	M105	1	mg/kg	U	001-022,024-026
TPH (C12-C16)	T8	M105	1	mg/kg	U	001-022,024-026
TPH (C16-C21)	T8	M105	1	mg/kg	U	001-022,024-026
TPH (C21-C35)	T8	M105	1	mg/kg	U	001-022,024-026

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
TPH (C35-C40)	T8	M105	1	mg/kg	N	001-022,024-026
TPH (C6-C8)	T54	AR	0.10	mg/kg	N	001-022,024-026
TPH (C8-C10)	T8	M105	1	mg/kg	U	001-022,024-026
TPH C6-C40 (Sum)	T85	M105	1	mg/kg	N	001-022,024-026
Naphthalene	T207	M105	0.1	mg/kg	М	001-022,024-026
Acenaphthylene	T207	M105	0.1	mg/kg	U	001-022,024-026
Acenaphthene	T207	M105	0.1	mg/kg	М	001-022,024-026
Fluorene	T207	M105	0.1	mg/kg	М	001-022,024-026
Phenanthrene	T207	M105	0.1	mg/kg	М	001-022,024-026
Anthracene	T207	M105	0.1	mg/kg	U	001-022,024-026
Fluoranthene	T207	M105	0.1	mg/kg	М	001-022,024-026
Pyrene	T207	M105	0.1	mg/kg	М	001-022,024-026
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	М	001-022,024-026
Chrysene	T207	M105	0.1	mg/kg	М	001-022,024-026
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	М	001-022,024-026
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	М	001-022,024-026
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	М	001-022,024-026
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	М	001-022,024-026
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	М	001-022,024-026
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	М	001-022,024-026
PAH(total)	T207	M105	0.1	mg/kg	U	001-022,024-026
pH	T7	A40			U	023
Retained on 10mm sieve	T2	M40	0.1	%	N	001-022,024-026
Moisture @105C	T162	AR	0.1	%	N	001-022,024-026

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 615234-1

Date of Report: 01-Dec-2016

Customer: Geo Environmental Group

17 Graham Road

Malvern

Worcestershire WR14 2HR

Customer Contact: Mr Matthew Perks

Customer Job Reference: GEG-16-458

Customer Purchase Order: 2387

Customer Site Reference: Adastral Park, Ipswich

Date Job Received at SAL: 17-Nov-2016
Date Analysis Started: 18-Nov-2016
Date Analysis Completed: 01-Dec-2016

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. Tests covered by this certificate were conducted in accordance with SAL SOPs.

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Aleksandra Pacula Project Manager Issued by : Aleksandra Pacula Project Manager

Apaulo

Project Site: Adastral Park, Ipswich

Customer Reference: GEG-16-458

Water Analysed as Water

GEG Suite 2

			SA	L Reference	615234 001	615234 002	615234 003	615234 004	615234 005
		Custor	ner Sampl	le Reference	CP18	CP19	CP20	CP26	CP28
			D	ate Sampled	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016
Determinand	Method	Test Sample	LOD	Units					
As (Dissolved)	T281	AR	0.2	μg/l	5.2	8.3	10	0.4	0.2
Boron	T6	AR	0.01	mg/l	0.23	0.31	0.19	0.08	0.04
Cd (Dissolved)	T281	AR	0.02	μg/l	<0.02	0.08	0.05	0.03	<0.02
Cr (Dissolved)	T281	AR	1	μg/l	<1	<1	<1	<1	<1
Chromium VI	T4	AR	0.03	mg/l	< 0.03	< 0.03	<0.03	< 0.03	<0.03
Cu (Dissolved)	T281	AR	0.5	μg/l	1.1	1.8	1.2	0.9	0.8
Cyanide(Total)	T4	AR	0.05	mg/l	<0.05	<0.05	<0.05	<0.05	< 0.05
Pb (Dissolved)	T281	AR	0.3	μg/l	0.3	3.3	1.8	0.3	<0.3
Hg (Dissolved)	T281	AR	0.05	μg/l	0.16	0.12	<0.05	<0.05	<0.05
Ni (Dissolved)	T281	AR	1	μg/l	7	8	11	3	<1
pН	T7	AR			7.1	8.4	7.5	7.9	7.6
Se (Dissolved)	T281	AR	0.5	μg/l	1.1	0.9	2.1	<0.5	<0.5
Sulphate	T686	F	0.5	mg/l	33	120	70	72	37
Sulphide	T4	AR	0.05	mg/l	<0.05	0.06	<0.05	<0.05	<0.05
Total Phenols	T99	AR	0.1	μg/l	(13,9) < 1.0	(13,9) < 1.0	(13,9) < 1.0	(13) < 0.1	(13) < 0.1
Zn (Dissolved)	T281	AR	2	μg/l	8	7	15	14	5

SAL Reference: 615234

Project Site: Adastral Park, Ipswich

Customer Reference: GEG-16-458

Water Analysed as Water

GEG TPH (6-Band)

SAL Reference	615234 001	615234 002	615234 003	615234 004	615234 005
Customer Sample Reference	CP18	CP19	CP20	CP26	CP28
Date Sampled	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016

Determinand	Method	Test Sample	LOD	Units					
TPH (C6-C8)	T215	AR	0.010	mg/l	<0.010	<0.010	(110) < 0.020	<0.010	<0.010
TPH (C8-C10) DW	T81	AR	0.01	mg/l	(100,13) < 0.02	(100,13) < 0.10	(100,13) < 0.10	(100,13) < 0.10	(100,13) < 0.10
TPH (C10-C12) DW	T81	AR	0.01	mg/l	(13,100) < 0.02	(13,100) < 0.10	(13,100) < 0.10	(100,13) < 0.10	(100,13) < 0.10
TPH (C12-C16) DW	T81	AR	0.01	mg/l	⁽¹³⁾ 0.07	⁽¹³⁾ 0.56	⁽¹³⁾ 1.4	^(100,13) <0.10	(13,100) < 0.10
TPH (C16-C21) DW	T81	AR	0.01	mg/l	⁽¹³⁾ 0.27	⁽¹³⁾ 1.7	(13) 3.9	(100,13) < 0.10	(13,100) < 0.10
TPH (C21-C35) DW	T81	AR	0.01	mg/l	⁽¹³⁾ 1.5	⁽¹³⁾ 6.0	⁽¹³⁾ 12	(100,13) < 0.10	(100,13) < 0.10
TPH (C35-C40)	T81	AR	0.01	mg/l	⁽¹³⁾ 0.39	⁽¹³⁾ 2.2	⁽¹³⁾ 3.0	^(13,100) <0.10	^(100,13) <0.10
TPH (Sum of Bands)	T85	AR			⁽¹³⁾ 1.7	⁽¹³⁾ 10	(13) 20	(13,100) < 0.10	(100,13) < 0.10

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Water Analysed as Water

GEG PAH (USEPA 16)

			SA	L Reference	615234 001	615234 002	615234 003	615234 004	615234 005
		Custon	ner Sampl	le Reference	CP18	CP19	CP20	CP26	CP28
			D	ate Sampled	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016	17-NOV-2016
Determinand	Method	Test Sample	LOD	Units					
Naphthalene	T149	AR	0.01	μg/l	(9,13,100) <1.0	(100,9,13) <0.50	(100,13,9) < 1.0	(13,100) < 0.05	(13,100) < 0.05
Acenaphthylene	T149	AR	0.01	μg/l	⁽¹³⁾ 2.0	⁽¹³⁾ 2.5	⁽¹³⁾ 15	(100,13) < 0.05	(13,100) < 0.05
Acenaphthene	T149	AR	0.01	μg/l	⁽¹³⁾ 2.0	⁽¹³⁾ 2.5	⁽¹³⁾ 14	(13,100) < 0.05	(100,13) < 0.05
Fluorene	T149	AR	0.01	μg/l	⁽¹³⁾ 3.0	⁽¹³⁾ 2.5	⁽¹³⁾ 15	(13,100) < 0.05	(100,13) < 0.05
Phenanthrene	T149	AR	0.01	μg/l	(13) 38	⁽¹³⁾ 24	⁽¹³⁾ 68	⁽¹³⁾ 0.05	(13,100) < 0.05
Anthracene	T149	AR	0.01	μg/l	⁽¹³⁾ 17	⁽¹³⁾ 7.5	⁽¹³⁾ 25	⁽¹³⁾ 0.05	(13,100) < 0.05
Fluoranthene	T149	AR	0.01	μg/l	⁽¹³⁾ 110	⁽¹³⁾ 64	⁽¹³⁾ 130	⁽¹³⁾ 0.40	(100,13) < 0.05
Pyrene	T149	AR	0.01	μg/l	⁽¹³⁾ 97	⁽¹³⁾ 58	⁽¹³⁾ 110	⁽¹³⁾ 0.40	(100,13) < 0.05
Benzo(a)Anthracene	T149	AR	0.01	μg/l	(13) 48	(13) 25	(13) 44	⁽¹³⁾ 0.15	(100,13) < 0.05
Chrysene	T149	AR	0.01	μg/l	⁽¹³⁾ 53	⁽¹³⁾ 31	(13) 50	⁽¹³⁾ 0.20	(13,100) < 0.05
Benzo(b)fluoranthene	T149	AR	0.01	μg/l	⁽¹³⁾ 40	(13) 22	⁽¹³⁾ 38	⁽¹³⁾ 0.10	(13,100) < 0.05
Benzo(k)fluoranthene	T149	AR	0.01	μg/l	(13) 42	(13) 29	(13) 37	⁽¹³⁾ 0.15	(13,100) < 0.05
Benzo(a)Pyrene	T149	AR	0.01	μg/l	(13) 45	(13) 27	(13) 44	(13,100) < 0.05	(100,13) < 0.05
Indeno(123-cd)Pyrene	T149	AR	0.01	μg/l	⁽¹³⁾ 26	⁽¹³⁾ 16	⁽¹³⁾ 25	⁽¹³⁾ 0.05	(100,13) < 0.05
Dibenzo(ah)Anthracene	T149	AR	0.01	μg/l	(13) 9.0	(13) 5.0	(13) 7.0	(13,100) < 0.05	(100,13) < 0.05
Benzo(ghi)Perylene	T149	AR	0.01	μg/l	(13) 30	⁽¹³⁾ 19	(13) 30	(13) 0.05	(100,13) < 0.05
PAH(total)	T149	AR	0.01	μg/l	⁽¹³⁾ 570	⁽¹³⁾ 330	⁽¹³⁾ 650	⁽¹³⁾ 1.6	(13,100) < 0.05

SAL Reference	e: 615234	1			
Project Si	te: Adastra	al Park, Ipsv	wich		
Customer Reference	e: GEG-1	6-458			
Water	Analys	ed as Water			
Miscellaneous					
		100	SA	L Reference	615234 001
		Custon	ner Sampl	e Reference	CP18
			Da	ate Sampled	17-NOV-2016
Determinand	Method	Test Sample	LOD	Units	
Hardness expressed as CaCO3	T6	AR	10	ma/l	820

Index to symbols used in 615234-1

Value	Description					
AR	As Received					
F	Filtered					
9	LOD raised due to dilution of sample					
100	LOD determined by sample aliquot used for analysis					
13	Results have been blank corrected.					
110	LOD raised due to low internal standard recovery.					
U	Analysis is UKAS accredited					
N	Analysis is not UKAS accredited					

Method Index

Value	Description
T281	ICP/MS (Filtered)
T99	GC/MS (LV)
T686	Discrete Analyser
T4	Colorimetry
T6	ICP/OES
T7	Probe
T149	GC/MS (SIR)
T85	Calc
T215	GC/MS (Headspace)(LV)
T81	GC/FID (LV)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
As (Dissolved)	T281	AR	0.2	μg/l	U	001-005
Boron	T6	AR	0.01	mg/l	N	001-005
Cd (Dissolved)	T281	AR	0.02	μg/l	U	001-005
Cr (Dissolved)	T281	AR	1	μg/l	U	001-005
Chromium VI	T4	AR	0.03	mg/l	N	001-005
Cu (Dissolved)	T281	AR	0.5	μg/l	U	001-005
Cyanide(Total)	T4	AR	0.05	mg/l	U	001-005
Pb (Dissolved)	T281	AR	0.3	μg/l	U	001-005
Hg (Dissolved)	T281	AR	0.05	μg/l	U	001-005
Ni (Dissolved)	T281	AR	1	μg/l	U	001-005
рН	T7	AR			N	001-005
Se (Dissolved)	T281	AR	0.5	μg/l	U	001-005
Sulphate	T686	F	0.5	mg/l	U	001-005
Sulphide	T4	AR	0.05	mg/l	N	001-005
Total Phenols	T99	AR	0.1	μg/l	N	001-005
Zn (Dissolved)	T281	AR	2	μg/l	U	001-005
TPH (C6-C8)	T215	AR	0.010	mg/l	N	001-005
TPH (C8-C10) DW	T81	AR	0.01	mg/l	U	001-005
TPH (C10-C12) DW	T81	AR	0.01	mg/l	U	001-005
TPH (C12-C16) DW	T81	AR	0.01	mg/l	U	001-005
TPH (C16-C21) DW	T81	AR	0.01	mg/l	U	001-005
TPH (C21-C35) DW	T81	AR	0.01	mg/l	U	001-005
TPH (C35-C40)	T81	AR	0.01	mg/l	N	001-005
TPH (Sum of Bands)	T85	AR			N	001-005
Naphthalene	T149	AR	0.01	µg/l	U	001-005
Acenaphthylene	T149	AR	0.01	μg/l	U	001-005
Acenaphthene	T149	AR	0.01	μg/l	U	001-005
Fluorene	T149	AR	0.01	μg/l	U	001-005
Phenanthrene	T149	AR	0.01	μg/l	U	001-005
Anthracene	T149	AR	0.01	μg/l	U	001-005
Fluoranthene	T149	AR	0.01	μg/l	U	001-005
Pyrene	T149	AR	0.01	μg/l	U	001-005
Benzo(a)Anthracene	T149	AR	0.01	μg/l	U	001-005
Chrysene	T149	AR	0.01	μg/l	U	001-005
Benzo(b)fluoranthene	T149	AR	0.01	μg/l	U	001-005
Benzo(k)fluoranthene	T149	AR	0.01	μg/l	U	001-005
Benzo(a)Pyrene	T149	AR	0.01	μg/l	U	001-005
Indeno(123-cd)Pyrene	T149	AR	0.01	μg/l	U	001-005
Dibenzo(ah)Anthracene	T149	AR	0.01	μg/l	U	001-005
Benzo(ghi)Perylene	T149	AR	0.01	μg/l	U	001-005
PAH(total)	T149	AR	0.01	μg/l	U	001-005
Hardness expressed as CaCO3	T6	AR	10	mg/l	N	001

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 617639-1

Date of Report: 05-Dec-2016

Customer: Geo Environmental Group

17 Graham Road

Malvern

Worcestershire WR14 2HR

Customer Contact: Mr Matthew Perks

Customer Job Reference: GEG-16-458

Customer Purchase Order: 2393

Customer Site Reference: Adastral Park, Ipswich

Date Job Received at SAL: 29-Nov-2016
Date Analysis Started: 29-Nov-2016
Date Analysis Completed: 05-Dec-2016

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with Section 25 of the SAL Quality Manual

Report checked and authorised by : Aleksandra Pacula Project Manager Issued by : Aleksandra Pacula Project Manager

Apaula

Project Site: Adastral Park, Ipswich **Customer Reference:** GEG-16-458

Water Analysed as Water

GEG Suite 2

			SA	L Reference	617639 001	617639 002	617639 003	617639 004	617639 005	617639 006
		Custon	ner Samp	le Reference	CP28	CP19	CP20	CP18	CP25	CP26
			D	ate Sampled	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016
Determinand	Method	Test Sample	LOD	Units						
As (Dissolved)	T281	AR	0.2	μg/l	0.3	11	8.4	5.7	<0.2	0.2
Boron	T6	AR	0.01	mg/l	0.05	0.51	0.20	0.22	0.06	0.05
Cd (Dissolved)	T281	AR	0.02	μg/l	<0.02	0.06	0.02	<0.02	<0.02	<0.02
Cr (Dissolved)	T281	AR	1	μg/l	1	<1	<1	<1	<1	<1
Chromium VI	T4	AR	0.03	mg/l	<0.03	<0.03	<0.03	< 0.03	<0.03	< 0.03
Cu (Dissolved)	T281	AR	0.5	μg/l	1.1	1.3	3.0	<0.5	1.3	0.5
Cyanide(Total)	T4	AR	0.05	mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pb (Dissolved)	T281	AR	0.3	μg/l	0.3	2.4	2.0	<0.3	<0.3	<0.3
Hg (Dissolved)	T281	AR	0.05	μg/l	<0.05	0.13	<0.05	<0.05	<0.05	<0.05
Ni (Dissolved)	T281	AR	1	μg/l	<1	6	18	6	1	1
pН	T7	AR			7.8	8.9	7.2	7.3	7.3	7.5
Se (Dissolved)	T281	AR	0.5	μg/l	<0.5	0.7	2.1	1.0	<0.5	<0.5
Sulphate	T686	F	0.5	mg/l	35	150	28	19	67	67
Sulphide	T4	AR	0.05	mg/l	0.05	0.05	0.05	0.05	<0.05	0.05
Total Phenols	T99	AR	0.1	μg/l	(13) < 0.1	⁽¹³⁾ 1.6	(13) 0.4	(13) 0.6	(13) < 0.1	⁽¹³⁾ <0.1
Zn (Dissolved)	T281	AR	2	μg/l	4	6	49	3	5	7

SAL Reference: 617639

Project Site: Adastral Park, Ipswich

Customer Reference: GEG-16-458

Water Analysed as Water

GEG TPH (6-Band)

			SA	L Reference	617639 001	617639 002	617639 003	617639 004	617639 005	617639 006
		Custon	ner Samp	e Reference	CP28	CP19	CP20	CP18	CP25	CP26
		- 9	D	ate Sampled	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016
Determinand	Method	Test Sample	LOD	Units						
TPH (C6-C8)	T215	AR	0.010	mg/l	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
TPH (C8-C10) DW	T81	AR	0.01	mg/l	(13) < 0.01	(100,13) < 0.02	(100,13) < 0.02	(13,100) < 0.03	(13) < 0.01	⁽¹³⁾ <0.01
TPH (C10-C12) DW	T81	AR	0.01	mg/l	(13) < 0.01	(13,100) < 0.02	(13) 0.04	(100,13) < 0.03	(13) < 0.01	⁽¹³⁾ <0.01
TPH (C12-C16) DW	T81	AR	0.01	mg/l	(13) < 0.01	⁽¹³⁾ 0.03	⁽¹³⁾ 0.30	(100,13) < 0.03	⁽¹³⁾ <0.01	⁽¹³⁾ <0.01
TPH (C16-C21) DW	T81	AR	0.01	mg/l	⁽¹³⁾ <0.01	⁽¹³⁾ 0.26	⁽¹³⁾ 0.75	(100,13) < 0.03	⁽¹³⁾ <0.01	⁽¹³⁾ <0.01
TPH (C21-C35) DW	T81	AR	0.01	mg/l	⁽¹³⁾ <0.01	⁽¹³⁾ 1.0	⁽¹³⁾ 0.63	(100,13) < 0.03	⁽¹³⁾ <0.01	⁽¹³⁾ <0.01
TPH (C35-C40)	T81	AR	0.01	mg/l	⁽¹³⁾ <0.01	⁽¹³⁾ 0.20	⁽¹³⁾ 0.03	(13,100) < 0.03	⁽¹³⁾ <0.01	⁽¹³⁾ <0.01
TPH (Sum of Bands)	T85	AR			⁽¹³⁾ N.D.	⁽¹³⁾ 1.5	⁽¹³⁾ 1.8	(13,100) < 0.03	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.

Project Site: Adastral Park, Ipswich

Customer Reference: GEG-16-458

Water Analysed as Water

GEG PAH (USEPA 16)

			SA	L Reference	617639 001	617639 002	617639 003	617639 004	617639 005	617639 006
		Custon	ner Samp	e Reference	CP28	CP19	CP20	CP18	CP25	CP26
			D	ate Sampled	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016	24-NOV-2016
Determinand	Method	Test Sample	LOD	Units						
Naphthalene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	⁽¹³⁾ 0.60	⁽¹³⁾ 0.17	⁽¹³⁾ 0.07	(13) < 0.01	(13) < 0.01
Acenaphthylene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.05	⁽¹³⁾ 0.15	(13) 0.03	⁽¹³⁾ 0.04	(13) < 0.01	⁽¹³⁾ <0.01
Acenaphthene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.05	⁽¹³⁾ 0.68	⁽¹³⁾ 0.14	⁽¹³⁾ 0.10	(13) < 0.01	⁽¹³⁾ <0.01
Fluorene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.04	⁽¹³⁾ 0.53	⁽¹³⁾ 0.14	⁽¹³⁾ 0.12	(13) < 0.01	(13) < 0.01
Phenanthrene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.04	⁽¹³⁾ 1.2	(13) 0.33	⁽¹³⁾ 0.35	⁽¹³⁾ 0.01	⁽¹³⁾ 0.01
Anthracene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.02	⁽¹³⁾ 0.27	⁽¹³⁾ 0.18	⁽¹³⁾ 0.20	(13) < 0.01	(13) < 0.01
Fluoranthene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.02	⁽¹³⁾ 1.2	⁽¹³⁾ 0.23	⁽¹³⁾ 0.47	⁽¹³⁾ 0.01	⁽¹³⁾ 0.01
Pyrene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.02	⁽¹³⁾ 1.1	⁽¹³⁾ 0.18	(13) 0.39	⁽¹³⁾ 0.02	⁽¹³⁾ 0.02
Benzo(a)Anthracene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	(13) 0.53	(13) 0.05	⁽¹³⁾ 0.17	(13) < 0.01	(13) < 0.01
Chrysene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	⁽¹³⁾ 0.55	(13) 0.04	⁽¹³⁾ 0.14	(13) < 0.01	(13) < 0.01
Benzo(b)fluoranthene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	(13) 0.70	(13) 0.03	⁽¹³⁾ 0.15	(13) < 0.01	(13) < 0.01
Benzo(k)fluoranthene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	⁽¹³⁾ 0.56	(13) 0.02	⁽¹³⁾ 0.12	(13) < 0.01	(13) < 0.01
Benzo(a)Pyrene	T149	AR	0.01	μg/l	(13) < 0.01	⁽¹³⁾ 0.71	(13) 0.03	⁽¹³⁾ 0.15	(13) < 0.01	(13) < 0.01
Indeno(123-cd)Pyrene	T149	AR	0.01	μg/l	⁽¹³⁾ 0.01	(13) 0.53	(13) 0.02	(13) 0.09	(13) < 0.01	⁽¹³⁾ <0.01
Dibenzo(ah)Anthracene	T149	AR	0.01	μg/l	(13) < 0.01	⁽¹³⁾ 0.17	(13) 0.01	(13) 0.03	(13) < 0.01	(13) < 0.01
Benzo(ghi)Perylene	T149	AR	0.01	μg/l	(13) < 0.01	⁽¹³⁾ 0.59	⁽¹³⁾ 0.02	⁽¹³⁾ 0.10	(13) < 0.01	⁽¹³⁾ <0.01
PAH(total)	T149	AR	0.01	ua/l	0.30	10	1.6	2.7	0.04	0.04

SAL Reference: 617639
Project Site: Adastral Park, Ipswich
Customer Reference: GEG-16-458

Water Analysed as Water
Miscellaneous

SAL Reference 617639 001

Customer Sample Reference CP28
Date Sampled 24-NOV-2016

Determinand	Method	Test Sample	LOD	Units	
Hardness expressed as CaCO3	T6	AR	10	mg/l	300

Index to symbols used in 617639-1

Value	Description
F	Filtered
AR	As Received
N.D.	Not Detected
13	Results have been blank corrected.
100	LOD determined by sample aliquot used for analysis
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Sample 004 submitted for GC/MS (Headspace) analysis was submitted in inappropriate container. It is possible therefore that the results provided may be compromised.

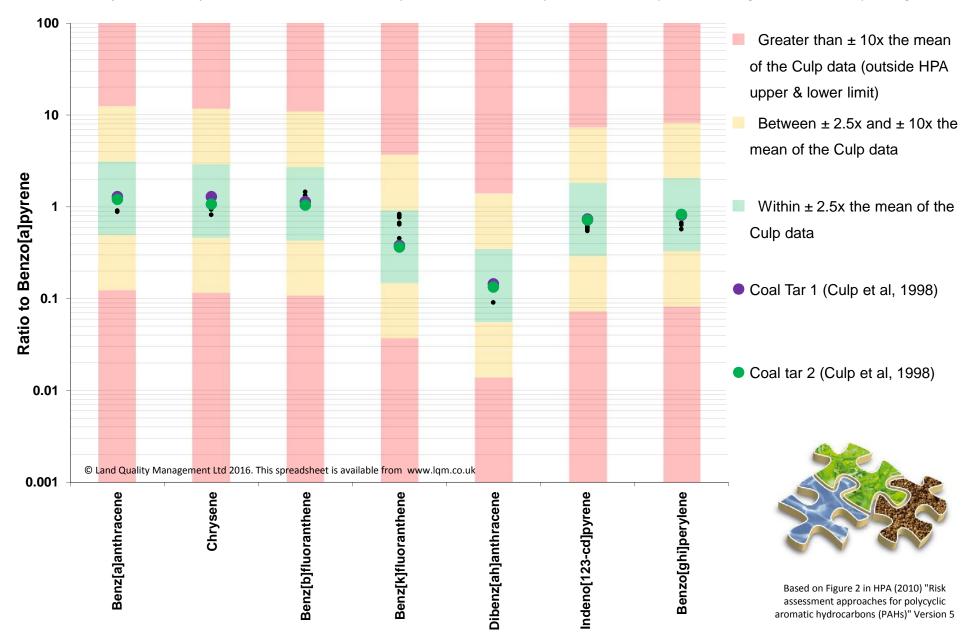
Method Index

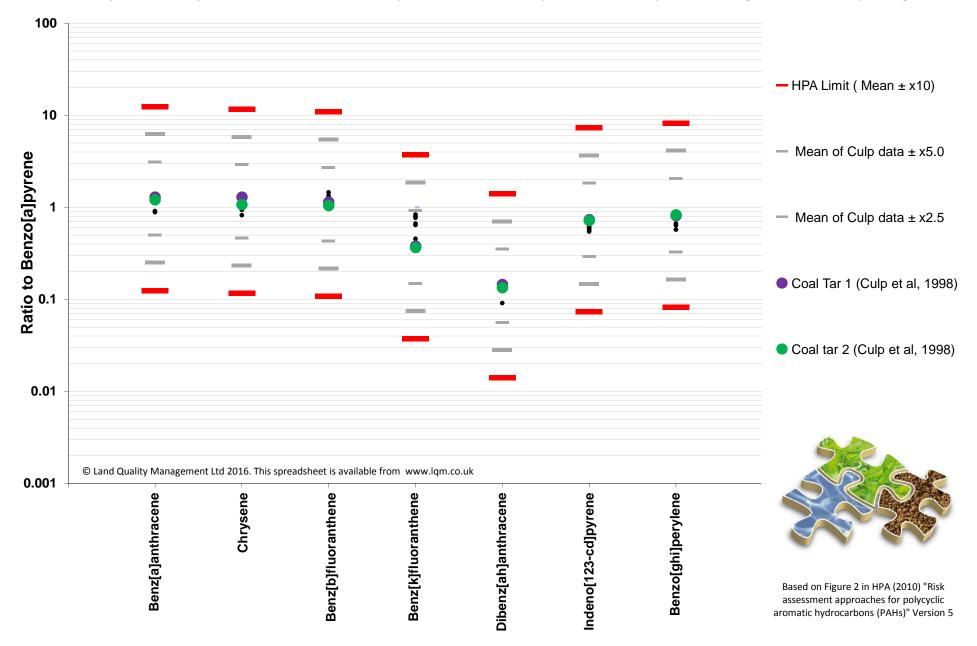
Value	Description					
T7	Probe					
T149	GC/MS (SIR)					
T686	Discrete Analyser					
T6	ICP/OES					
T4	Colorimetry					
T81	GC/FID (LV)					
T215	GC/MS (Headspace)(LV)					

	T85	Calc
Ī	T99	GC/MS (LV)
ſ	T281	ICP/MS (Filtered)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
As (Dissolved)	T281	AR	0.2	μg/l	U	001-006
Boron	T6	AR	0.01	mg/l	N	001-006
Cd (Dissolved)	T281	AR	0.02	μg/l	U	001-006
Cr (Dissolved)	T281	AR	1	μg/l	U	001-006
Chromium VI	T4	AR	0.03	mg/l	N	001-006
Cu (Dissolved)	T281	AR	0.5	μg/l	U	001-006
Cyanide(Total)	T4	AR	0.05	mg/l	U	001-006
Pb (Dissolved)	T281	AR	0.3	μg/l	U	001-006
Hg (Dissolved)	T281	AR	0.05	μg/l	U	001-006
Ni (Dissolved)	T281	AR	1	μg/l	U	001-006
pH	T7	AR			N	001-006
Se (Dissolved)	T281	AR	0.5	μg/l	U	001-006
Sulphate	T686	F	0.5	mg/l	U	001-006
Sulphide	T4	AR	0.05	mg/l	N	001-006
Total Phenols	T99	AR	0.1	μg/l	N	001-006
Zn (Dissolved)	T281	AR	2	μg/l	U	001-006
TPH (C6-C8)	T215	AR	0.010	mg/l	N	001-006
TPH (C8-C10) DW	T81	AR	0.01	mg/l	U	001-006
TPH (C10-C12) DW	T81	AR	0.01	mg/l	U	001-006
TPH (C12-C16) DW	T81	AR	0.01	mg/l	U	001-006
TPH (C16-C21) DW	T81	AR	0.01	mg/l	U	001-006
TPH (C21-C35) DW	T81	AR	0.01	mg/l	U	001-006
TPH (C35-C40)	T81	AR	0.01	mg/l	N	001-006
TPH (Sum of Bands)	T85	AR			N	001-006
Naphthalene	T149	AR	0.01	μg/l	U	001-006
Acenaphthylene	T149	AR	0.01	μg/l	U	001-006
Acenaphthene	T149	AR	0.01	μg/l	U	001-006
Fluorene	T149	AR	0.01	μg/l	U	001-006
Phenanthrene	T149	AR	0.01	μg/l	U	001-006
Anthracene	T149	AR	0.01	μg/l	U	001-006
Fluoranthene	T149	AR	0.01	μg/l	U	001-006
Pyrene	T149	AR	0.01	μg/l	U	001-006
Benzo(a)Anthracene	T149	AR	0.01	μg/l	U	001-006
Chrysene	T149	AR	0.01	μg/l	U	001-006
Benzo(b)fluoranthene	T149	AR	0.01	μg/l	U	001-006
Benzo(k)fluoranthene	T149	AR	0.01	μg/l	U	001-006
Benzo(a)Pyrene	T149	AR	0.01	μg/l	U	001-006
Indeno(123-cd)Pyrene	T149	AR	0.01	μg/l	U	001-006
Dibenzo(ah)Anthracene	T149	AR	0.01	μg/l	U	001-006
Benzo(ghi)Perylene	T149	AR	0.01	μg/l	U	001-006
PAH(total)	T149	AR	0.01	μg/l	U	001-006
Hardness expressed as CaCO3	T6	AR	10	mg/l	N	001


APPENDIX E


PAH PROFILING

AREA 1

Fluorene	Indeno(1,2,3	Naphthalene	Phenanthren	y ;	ne '	^T otal PAH
Flu_{C}	,nde	d _e √	Phe		Pyrene	70te
< 0.1	< 0.1	< 0.1	< 0.1		0.2	
< 0.1		0.3 < 0.1		0.5	1.1	6.3
	0.2	8.0	0.8	1.8	2.2	17
< 0.1		0.4 < 0.1		0.3	1	6.5
< 0.1		0.6 < 0.1		0.5	1.6	11
	0.2	0.9 < 0.1		2.1	2.7	18
< 0.1		1.6 < 0.1		1.4	3.8	25

AREA 2

Fluorene	Indeno(1,2,3,5	Naphthalene	Phenanthra	eus.	Pyrene	^{Tot} al PAH
<0.1		1 < 0.1		1.1	2.5	16
< 0.1		0.4 < 0.1		0.5	1	6.8
<0.1		0.3 < 0.1		0.3	0.7	3.9
<0.1	<0.1	<0.1	< 0.1		0.2	1
<0.1		0.1 < 0.1	< 0.1		0.3	1.7
<0.1		0.4 < 0.1		1	1.5	9.1
	1.3	14 < 0.1		28	36	250
<0.1		0.2 < 0.1		0.4	0.6	3.5
<0.1		0.5 < 0.1		0.3	1.2	7.7
<0.1		1.1 < 0.1		0.9	2.5	17
<0.1		0.2 < 0.1		0.2	0.9	4.7
<0.1		0.1 < 0.1		0.2	0.4	2.3
<0.1		0.5	0.1	0.3	2	11

APPENDIX F

STATISTICAL ASSESSMENT OF CHEMICAL RESULTS

AREA 1

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	As to Phenol
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	13 October 2016
User details	FT
Statistics calculate	or (version 1)

Input data

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

© ESI Ltd. 2008

Data sheet Go to summary Project details Cadmium Chromium Chromium Cyanide Outliers: Selenium Cyanide Phenols(Mono Soil Organic Outliers: Lead Outliers: Soil Mercury (total) Organic Matter Easting Northing mg/kg TP03 0.3 MG TP04 0.3 MG 14 <1 26 <3 0.45 MG TP05 6.6 <1 0.7 1.85 MG TP05 8.2 <1 21 0.7 0.6 MG 14 TP06 8.1 <1 0.7 0.3 MG 26 <1 7.4 <1 TP08 0.6 MG 21 <1 5 <3 15 <3 2.7 8 <1 8.3 <1 0.3 MG 66 1.3 0.3 MG 16 <3 8.1 <1 260 TP11 12 <1 2.7 19 <1 <1 0.5 MG 0.4 MG 6.9 <1 7 <3 16 <3 3 <1 15 <1 TP12 0.6 9 <1 TP13 17 <1 69 8.1 <1 1.6 TP14 0.4 MG 50 <1 14 <3 8.1 <1 0.3 MG 70 <1 11 <3 TP15 8 <1 WS06 0.1 MG 36 <1 8.1 <1

lient/client ref: Brockbanks Consulting Ltd roject ref: GEG-16-458 te ref: Adsatral Park, Ipswich ata description: Made Ground ontaminant(s): As to Phenol est scenario: Planning ate: 13 October 2016 ser details: FT	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (total) (mg/kg)	Chromium (VI) (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Cyanide (total) (mg/kg)	Cyanide (free)	pН	Phenols(Mono) (mg/kg)	Soil Organic Matter (%)	Outliers: Lead (mg/kg)	Outliers: Mercury (mg/kg)	Outliers: Soil Organic Matter (%)
Critical concentration, C _c	32	5	130	4.3	200	1	130	350	43	43		198	32	200	1	32
Notes																
Sample size, n	14	14	14	14	13	13	14	14	14	14	14	14	13	1	1	1
Sample mean, \overline{X}	8.85714286	0.5	13.4285714	0.5	32.4615385	0.65384615	11.3571429	1.5	0.5	0.5	7.72142857	0.5	1.71538462	260	2	8.7
Standard deviation, s	4.34753941	0	4.58617128	0	23.4187083	0.24019223	6.2463176	0	0	0	0.53805715	0	1.1149336	0	0	0
Number of non-detects	0	14	0	14	0	9	0	14	14	14	0	14	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Outliers?	No	No	No	No	No	No	No	No	No	No	No	No	No	N/A (n<3)	N/A (n<3)	N/A (n<3)
Distribution	Normal	Single value	Normal	Single value	Non-normal	Non-normal	Normal	Single value	Single value	Single value	Non-normal	Single value	Normal	Single value	Single value	Single value
Statistical approach	Auto: One-sample I	Auto: Chebychev	Auto: One-sample t	t Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: One-sample t	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: One-sample t	: Auto: Chebychev	Auto: Chebychev	Auto: Chebychev
Test scenario:	Planning: is true m	ean lower than critic	cal concentration (μ <	: Cc)?	Evidence	level required:	95%	Use Normal distrib	ution to test for outli	ers 🔻	1					
t statistic, t ₀ (or k ₀)	-19.91762104	N/A	-95.105551	N/A	-25.79427125	-5.196152423	-71.06922054	N/A	N/A	N/A		N/A	-97.93653545	N/A	N/A	N/A
Upper confidence limit (on true mean concentration, µ)	10.9148413	0.5	15.5992148	0.5	60.7733762	0.9442244	14.3135366	1.5	0.5	0.5	8.34824618	0.5	2.26651594	260	2	8.7
Evidence level	100%	100%	100%	100%	100%	96%	100%	100%	100%	100%		100%	100%	0%	0%	100%
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	lower bound	evidence level	evidence level	evidence level	evidence level	evidence level
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc		μ < Cc	μ < Cc	µ ≥ Cc	μ≥ Cc	μ < Cc
Select dataset	Оү	Оү	ΟY	Оү	ΟY	Оү	Оү	Оү	Оү	ΟY	Оү	Оү	⊚ Y	Оү	Оү	Оү
			1			st	Show i									

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	Cu, Zn & B
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	13 October 2016
User details	FT
Statistics calculate	or (version 1)

Input data

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

© ESI Ltd. 2008

Go to	summary				ata	s h	e e	t		Project o	details				
Easting	Northing Sample ID	Copper	Zinc	Boron											
		mg/kg	mg/kg	mg/kg											
P03 P04	0.3 MG	12	29												
P04 P05	0.3 MG 0.45 MG	13 3	44 · 13 ·												
P05	1.85 MG	23	57												
P06	0.6 MG	5	23	<1											
P07	0.3 MG	18	41	<1											
P08	0.6 MG	14	36	<1											
P10	0.3 MG	21	77	<1											
P11 P12	0.3 MG 0.5 MG	44	110 18	<1											
P12	0.5 MG 0.4 MG	43	92												
P14	0.4 MG	19	79												
P15	0.3 MG	22	66												
VS06	0.1 MG	15	56												
														-	
													1		
													ļ		
			+									-	-	1	
												 	 		
														1	
						-									
														-	
			i									 	 	1	
														1	
												-	-	1	
											1	 	 	1	

Critical concentration, C _c 2330	29.1295892 C 0 1. alf detection limit Half detection No N	4 0 5 No Data 0 4 tition limit Half detection lim	0 No Data	0 No Data	0 No Data	0 No Data	0 No Data	0 No Data	0 No Data	0 No Data	0 No Data	0	0	0
Sample size, n	52.9285714 0.29.1295892 0 1.29.1295892 0 1.29.1295892 No	5 No Data) 4 tion limit Half detection lim	No Data					-				_	0	
Sample mean, \$\overline{X}\$ 18.2857143 55. Standard deviation, s 12.4864762 25. Number of non-detects 0 Set non-detect values to: Half detection limit Half No No No No No No No	52.9285714 0.29.1295892 0 1.29.1295892 0 1.29.1295892 No	5 No Data) 4 tion limit Half detection lim	No Data					-				_	0	^
Standard deviation, s Number of non-detects Set non-detect values to: Outliers? No	29.1295892 C 0 1. alf detection limit Half detection No N	4 ttion limit Half detection lim		No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data			U
Number of non-detects Set non-detect values to: Outliers? No	0 1 alf detection limit Half detection No N	4 tion limit Half detection lim	nit Half detection limit								NO Data	No Data	No Data	No Data
Set non-detect values to: Half detection limit Hal Outliers? No	alf detection limit Half detection No N	tion limit Half detection lim	nit Half detection limit											
Outliers? No	No N		nit Half detection limit											
		0		t Half detection limit	t Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Distribution Normal														
		value												
Statistical approach Auto: One-sample t Aut	uto: One-sample t Auto: Che	bychev Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Test scenario: Planning: is true mean	n lower than critical concentra	ation (µ < Cc)? ▼	Evidence	e level required:	95%	Use Normal distrib	ution to test for outlie	ers 🔻						
t statistic, t ₀ (or k ₀) -692.7208841 -4	449.1942215 N/	'A												
Upper confidence limit (on true mean concentration, μ) 24.1955866	66.71566 0.	5												
Evidence level 100%	100% 100)%												
	vidence level evidence	level												
Result μ < Cc	μ < Cc μ <													
Select dataset O Y	⊚ Y O	y O y	Оү	Οy	Оү	Οy	ΟY	ΟY	Οy	Οy	Оү	Οy	Οy	Οy
Back to data Go to o	outlier test	Go to n	ormality te	est	Show	individual	summary							

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	PAHs (Naphthalene - Pyrene)
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	13 October 2016
User details	FT
Statistics calculate	or (version 1)

Input data

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

© ESI Ltd. 2008

Data sheet Go to summary Project details Naphthalene Acenaphthyl Acenaphthen Fluorene Phenanthren Anthracene Fluoranthen Pyrene Easting Northing mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TP04 0.3 MG 0.45 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.6 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 MG <0.1 <0.1 <0.1 <0.1 0.5 MG

tilent/client ref: Brookbanks Consulting Ltd roject ref: GEG-16-458 itte ref: Adastra Park, Ipswich lata description: Made Ground contaminant(s): PAHs (Naphthalene - yrene) set scenario: Planning	Naphthalene (mg/kg)	Acenaphthyle ne (mg/kg)	Acenaphthene (mg/kg)	Fluorene (mg/kg)	Phenanthrene (mg/kg)	Anthracene (mg/kg)	Fluoranthene (mg/kg)	Pyrene (mg/kg)									
late: 13 October 2016	0.05	165	199	161	92	2020	257	FCF									4
Critical concentration, C _c	0.85	165	199	161	92	2232	251	565									l
Notes																	
Sample size, n	7	7	7	7	7	7	7	7	0	0	0	0	0	0	0	0	i
Sample mean, \overline{X}	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	1
Standard deviation, s	1.499E-17	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18									1
Number of non-detects	7	7	7	7	7	7	7	7									
Set non-detect values to:	Detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limi	t Half detection limit	t Half detection limit	Half detection limit	
Outliers?	No	No	No	No	No	No	No	No									
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal									1
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	٠
Test scenario:	Planning: is true m	ean lower than critic	cal concentration (µ <	: Cc)? ▼	Evidence	e level required:	95%	Use Normal distribu	ution to test for outli	ers 🔻							ı
t statistic, t ₀ (or k ₀)	-1.32378E+17	-5.82288E+19	-7.02311E+19	-5.68167E+19	-3.24591E+19	-7.87898E+20	-9.07056E+19	-1.99432E+20									1
Upper confidence limit (on true mean concentration, µ)	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05									ĺ
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%									
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level									٠,
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc									
Select dataset	Оү	Оү	⊚ Y	ΟY	Оү	Оү	Оү	Оү	Оү	ΟY	Оү	Оү	Оү	Оү	ΟY	Оү	1
Back to data	Go to	outlier te	est	Go to no	ormality te	est	Show i	ndividual	summary								

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	PAHs (Benzo(a)anthracene - Benzo(ghi)perylene)
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	13 October 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Benzo(a)anth Chrysene Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(123- Dibenzo(ah)a Benzo(ghi)p racene ranthene cd)Pyrene nthracene Easting Northing mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TP03 TP04 0.3 MG TP05 0.45 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.6 MG TP06 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 MG <0.1 <0.1 <0.1 <0.1 0.6 MG 0.5 MG

lient/client ref: Brookbanks Consulting Ltd roject ref: GEG-16-458 te ref: Adastral Park, Ipswich ata description: Made Ground ontaminant(s): PAHs (Benzo(a)anthracene Benzo(qhi)perylene) set scenario: Planning ate: 13 October 2016	Benzo(a)anthr acene (mg/kg)	Chrysene (mg/kg)	Benzo(b)fluor anthene (mg/kg)	Benzo(k)fluor anthene (mg/kg)	Benzo(a)pyren e (mg/kg)	Indeno(123- cd)Pyrene (mg/kg)	Dibenzo(ah)an thracene (mg/kg)	Benzo(ghi)per ylene (mg/kg)									
Critical concentration, C _c	5.9	12	1.9	56	2	21	0.17	213									
Notes																	
Sample size, n	7	7	7	7	7	7	7	7	0	0	0	0	0	0	0	0	
Sample mean, \overline{X}	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	
Standard deviation, s	1.499E-17	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18	7.4949E-18									
Number of non-detects	7	7	7	7	7	7	7	7									
Set non-detect values to:	Detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limi	t Half detection limit	Half detection limit	t Half detection limit	
Outliers?	No	No	No	No	No	No	No	No									
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal									
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	. •
Test scenario:	Planning: is true me	ean lower than critic	al concentration (μ <	: Cc)? ▼	Evidence	e level required:	95%	Use Normal distribu	tion to test for outli	ers 🔻							
t statistic, t ₀ (or k ₀)	-1.02373E+18	-4.21845E+18	-6.53066E+17	-1.97508E+19	-6.88367E+17	-7.39553E+18	-4.2361E+16	-7.51732E+19									
Upper confidence limit (on true mean concentration, µ)	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05									
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%									
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level									
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc									
Select dataset	ΟY	Оү	ΟY	ΟY	ΟY	ΟY	ΟY	⊚ Y	Οy	ΟY	ΟY	Оү	Оү	Οy	ΟY	Οy	
Back to data	Go to	outlier te	st	Go to no	ormality te	est	Show i	ndividual	summary								

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	TPH (banded)
Test scenario	Planning: is true mean lower than critical concentration (µ < Cc)? ▼
Date	13 October 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Outliers: TPH (C16-C21) Outliers: TPH (21-C35) TPH (C35-40) TPH (C6-C8) TPH (C12-C16) TPH (C16-C21) TPH (21-C35) TPH (C35-40) Outliers: TPH (C16-Easting Northing mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TP03 TP04 0.3 MG TP05 0.45 MG <0.1 26 1.85 MG TP05 <0.1 0.6 MG TP06 <0.1 0.3 MG TP08 0.6 MG <0.1 5 39 0.3 MG <0.1 TP11 0.3 MG 83 15 <0.1 <1 <1 0.5 MG 0.4 MG TP12 <0.1 TP13 <0.1 19 40 TP14 0.4 MG <0.1 82 20 TP15 0.3 MG <0.1 WS06 0.1 MG 220 380

Zilient/Client ref: Brookbanks Consulting Ltd Project ref: GEG-16-458 lite ref: Adastral Park, Ipswich Jata description: Made Ground Jonatamiant(s): TPH (banded) est scenario: Planning Jate: 13 October 2016 Jser details: FT	TPH (C6-C8) (mg/kg)	TPH (C8-C10) (mg/kg)	TPH (C10-C12) (mg/kg)	TPH (C12-C16) (mg/kg)	TPH (C16-C21) (mg/kg)	TPH (21-C35) (mg/kg)	TPH (C35-40)	Outliers: TPH (C16-C21) (mg/kg)	Outliers: TPH (21-C35) (mg/kg)	Outliers: TPH (C35-40)			
Critical concentration, C _c	7	13	61	185	474	1770	1770	474	1770	1770			
Notes													
Sample size, n	14	14	14	14	11	13	12	3	1	2	0	0	0
Sample mean, \overline{X}	0.05	0.5	0.5	0.5	1.90909091	25.5384615		16	220	208.5	No Data	No Data	No Data
Standard deviation, s	0	0	0	0	1.64039906		8.64186428	7.54983444	0	242.537626			
Number of non-detects	14	14	14	14	6	2	6	0	0	0			
Set non-detect values to:			Half detection limit							Half detection limit	Half detection limit	Half detection limit	Half detection limit
Outliers?	No	No	No	No	No	No	No	No	N/A (n<3)	N/A (n<3)			
Distribution	Single value	Single value	Single value	Single value	Non-normal	Non-normal	Non-normal	Normal	Single value	N/A (n<3)			
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: One-sample	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto
Test scenario:	Planning: is true m	ean lower than critic	al concentration (μ <	< Cc)? ▼	Evidence	level required:	95%	Use Normal distrib	ution to test for outli	ers 🔻			
t statistic, t ₀ (or k ₀)	N/A	N/A	N/A	N/A	-954.4923831	-211.9798013	-706.5002297	-105.0724061	N/A	-9.104956268			
Upper confidence limit (on true mean concentration, µ)	0.05	0.5	0.5	0.5	4.06499765	61.4094809	18.3741074	28.7279221	220	956.051169			
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%	100%	99%			
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level			
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc			
Select dataset	ΟY	Оү	ΟY	ΟY	ΟY	ΟY		Оү	Оү	ΟY	Оү	ΟY	Оү
Back to data	Go to	outlier te	st	Go to no	ormality te	st	Show i	ndividual	summary				

Client/client ref	Brookbanks
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	Benzo(a)pyrene surrogate marker
Test scenario	Planning: is true mean lower than critical concentration (µ < Cc)? ▼
Date	2 December 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Go to	summ	ary		D a	ta	s h	ее	t			Project o	details					
Easting	Northing	Sample ID	Benzo(a)pyre ne														
			mg/kg														
TP05	1.85	MG	0.1														
TP10 TP11	0.3	MG	0.5														
TP13	0.3	MG MG	1.4 0.6													-	
TP14	0.4	MG	1.1										1	1			
TP15	0.3	MG	1.5														
WS06	0.1	MG	2.6														
																<u> </u>	
													1	1			
																<u> </u>	
									<u> </u>								
									†								
																ļ	
									-								
									 				 	 			
									†								
																ļ	
																1	
					ļ			<u> </u>		ļ	ļ	<u> </u>		 l	ļ]	

ent/client ref: Brookbanks oject ref: GEG-16-458	Benzo(a)pyren e (mg/kg)									
ref: Adastral Park, Ipswich a description: Made Ground	e (ilig/kg)									
ntaminant(s): Benzo(a)pyrene surrogate										
st scenario: Planning										
te: 2 December 2016 Critical concentration, C _c	0.00									
Critical Concentration, G _c	0.98									
Notes										
Sample size, n	7	0	0	0	0	0	0	0	0	
Sample mean, $\overline{\chi}$	1.11428571	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	
Standard deviation, s	0.82750342									
Number of non-detects	0									
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	
Outliers?	No									
Distribution	Normal]
Statistical approach	Auto: One-sample t	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	
Test scenario:	Planning: is true mea	an lower than critica	Il concentration (μ <	Cc)? ▼	Evidence	e level required:	95%	Use Normal distribu	ition to test for outlie	rs
t statistic, t ₀ (or k ₀)	0.429347598									
Upper confidence limit (on true mean concentration, μ)	1.72204817									
Evidence level	34%									
Base decision on:	evidence level									'▼
Result	μ≥Cc]
Select dataset	● Y	ΟY	ΟY	ΟY	ΟY	ΟY	ΟY	Оү	ΟY	
Back to data	Go to	outlier te	st	Go to no	ormality te	est	Show i	ndividual	summarv	

AREA 2

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	As to Phenol
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	1 November 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Cadmium Chromium Chromium Outliers: Selenium Cyanide Cyanide Outliers: Outliers: Outliers: Lead Outliers: Outliers: (total) Arsenic Chromium Mercury Nickel Cyanide (total) (total) Easting Northing mg/kg TP01 0.2 MG 28 22 <3 41 <1 25 <1 35 <1 1.3 MG 12 <1 13 <3 10 <3 12 <3 TP02 2.7 MG 1.4 MG 4.1 MG 37 <1 9 <3 55 0.8 MG 16 <1 19 <1 23 <3 17 <3 21 <1 0.2 MG TP18 1.1 MG 10 <1 35 <3 7.1 9 <1 9 <1 36 <1 42 <1 8 <3 9 <3 1.85 MG TP18 7.8 7 <1 11 <1 0.2 MG TP20 18 <1 19 <1 7.9 TP20 0.9 MG 55 <1 16 <3 TP21 1.45 MG 26 <1 12 <3 8 <1 13 <1 7.8 TP21 15 <1 10 <1 10 <3 3 MG 10 <1 13 <3 TP22 TP22 13 <3 12 TP23 0.2 MG 27 13 <3 8.1 13 <1 15 <1 TP23 MG 10 <1 15 <1 26 13 <3 17 <3 TP23 MG 8.5 TP24 0.25 MG 31 24 <3 TP24 MG 27 <1 17 <3 3.5 MG <3 TP24 25 <1

-			 			 		 					
]]	
			l			l		l		1	1	1	1
			İ			İ		İ		İ			
			l			l		l			l	l	l
													ļ
						<u> </u>	 		 		 		
													i e
			l	l		-		l		-	-	-	-
-													
			l	1		l		l		1	 	 	1
			l			l		l					
			l			l		l					l
										İ			İ
										1	ļ	ļ	

ent/client ref: Brookbanks Consulting Ltd oject ref: CEG-16-458 e ref: Adastral Park, Ipswich tat description: Made Ground ritaminant(s): As to Phenol st scenario: Planning tet: 1 November 2016 er details: FT	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (total) (mg/kg)	Chromium (VI) (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	(mg/kg)	Cyanide (free)	рН	Outliers: Arsenic (mg/kg)	Outliers: Chromium (total) (mg/kg)	Outliers: Lead (mg/kg)	Outliers: Mercury (mg/kg)	Outliers: Nickel (mg/kg)	Outliers: Cyanide (total (mg/kg)
Critical concentration, C _c	32	5	130	4.3	200	1	130	350	43	43		32	130	200	1	130	43
Notes																	
Sample size, n	21	23	18	23	21	22	22	23	22	23	23	2	5	2	1	1	1
Sample mean, $\overline{\mathcal{X}}$	10.4285714	0.5	14.944444	0.5	29.5238095	0.65909091	16.3181818	1.5	0.5	0.5	7.81304348	34.5	68.2	115	2	210	1
Standard deviation, s	4.30780023	0	3.63758521	0	14.5657785	0.23836565	7.6306797	0	0	0	0.29588749	2.12132034	52.1747065	21.2132034	0	0	0
Number of non-detects	1	23	0	23	0	15	0	23	22	23	0	0	0	0	0	0	0
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limi
Outliers?	No	No	No	No	No	No	No	No	No	No	No	N/A (n<3)	Yes	N/A (n<3)	N/A (n<3)	N/A (n<3)	N/A (n<3)
Distribution	Normal	Single value	Normal	Single value	Normal	Non-normal	Non-normal	Single value	Single value	Single value	Normal	N/A (n<3)	Non-normal	N/A (n<3)	Single value	Single value	Single value
Statistical approach	Auto: One-sample t-	Auto: Chebychev	Auto: One-sample t-	Auto: Chebychev	Auto: One-sample t-	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: One-sample t	- Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev
Test scenario:	Planning: is true me	an lower than critica	l concentration (μ < 0	ic)? =	Evidence	level required:	95%	Use Normal distrib	ution to test for outlie	rs 🔻	1						
t statistic, t ₀ (or k ₀)	-22.94737428	N/A	-134.19325	N/A	-53.63393686	-6.708203932	-69.87778447	N/A	N/A	N/A		1.666666667	-2.648582239	-5.666666667	N/A	N/A	N/A
Upper confidence limit (on true mean concentration, µ)	12.049874	0.5	16.4359607	0.5	35.0058496	0.88060896	23.409528	1.5	0.5	0.5	7.9189858	41.0383484	169.907227	180.383484	2	210	1
Evidence level	100%	100%	100%	100%	100%	98%	100%	100%	100%	100%		0%	88%	97%	0%	0%	100%
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	lower bound	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc		μ≥Cc	μ≈≥ Cc	μ < Cc	µ ≥ Cc	μ ≥ Cc	μ < Cc
Select dataset	Оч	ΟY	Оч	ΟY	Оч	ΟY	ΟY	ΟY	Оч	Оү	Оч	Оч	⊚ Y	Оч	Оч	ΟY	ΟY
Back to data	Go to	outlier te	st	Go to no	ormality te	st	Show i	ndividual	summary								

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	Cu, Zn & B
Test scenario	Planning: is true mean lower than critical concentration (µ < Cc)? ▼
Date	1 November 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Copper Zinc Easting Northing mg/kg mg/kg mg/kg TP01 0.2 MG 1.3 MG 2.7 MG 1.4 MG 53 <1 88 <1 81 <1 4.1 MG 0.8 MG 0.2 MG 22 <1 67 <1 65 <1 94 <1 TP18 1.1 MG 1.85 MG 0.2 MG 0.9 MG TP20 TP20 TP21 1.45 MG 30 <1 140 <1 TP21 3 MG TP22 0.5 MG TP22 TP23 52 <1 50 <1 110 <1 0.2 MG 14 TP23 1 MG TP23 3 MG 85 <1 51 <1 85 <1 110 <1 TP24 0.25 MG TP24 MG 3.5 MG TP24

oject ref: GEG-16-458 te ref: Adastral Park, Ipswich ata description: Made Ground	Copper (mg/kg)	Zinc (mg/kg)	Boron (mg/kg)														
ntaminant(s): Cu, Zn & B st scenario: Planning te: 1 November 2016 er details: FT																	
Critical concentration, C _c	2330	3550	291														
Notes																	
Sample size, n	23	23	23	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sample mean, \overline{X}	21.7391304	70	0.5	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	1
Standard deviation, s	14.8391907	28.7054002	0														
Number of non-detects	0	0	23														
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	t Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limi	t Half detection limit	: Half detection limit	Half detection limit	
Outliers?	No	No	No														
Distribution	Non-normal	Normal	Single value														
Statistical approach	Auto: Chebychev	Auto: One-sample t	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	_ ▼
Test scenario:	Planning: is true me	an lower than critica	al concentration (μ <	: Cc)? ▼	Evidence	e level required:	95%	Use Normal distrib	ution to test for outli	iers 🔻							
t statistic, t ₀ (or k ₀)	-745.9995937	-581.4060627	N/A														
Upper confidence limit (on true mean concentration, μ)	35.2263708	80.2779497	0.5														
Evidence level	100%	100%	100%														
Base decision on:	evidence level	evidence level	evidence level														. •
Result	μ < Cc	μ < Cc	μ < Cc														
Select dataset	Οy	⊚ Y	ΟY	ΟY	ΟY	Οy	Οy	ΟY	ΟY	ΟY	ΟY	ΟY	Οy	Оү	Οy	Οy	
	Go to	outlier tes	st 1	Go to no	ormality to	est	Show i	ndividual	summary	, 1							

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	PAHs (Naphthalene - Pyrene)
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	1 November 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Naphthalene Acenaphthyl Acenaphthen Fluorene Phenanthren Anthracene Fluoranthen Outliers: Pyrene Fluoranthen Pyrene Easting Northing mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TP02 2.7 MG <0.1 <0.1 <0.1 <0.1 <0.1 4.1 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 1.85 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 TP20 0.9 MG <0.1 <0.1 TP21 1.45 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 TP24 <0.1 <0.1 <0.1 <0.1 TP25 0.95 MG <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 TP25

lient/fclient ref: Brookbanks Consulting Ltd roject ref: GEG-16-458 tle ref: Adastral Park, Ipswich ata description: Made Ground ontaminant(s): PAHs (Naphthalene - yrene) est scenario: Planning ate: 1 November 2016	Naphthalene (mg/kg)	Acenaphthyle ne (mg/kg)	Acenaphthene (mg/kg)	Fluorene (mg/kg)	Phenanthrene (mg/kg)	Anthracene (mg/kg)	Fluoranthene (mg/kg)	Pyrene (mg/kg)	Outliers: Fluoranthene (mg/kg)	Outliers: Pyrene (mg/kg)						
Critical concentration, C _c	0.85	165	199	161	92	2232	257	565	257	565						
Notes																
Sample size, n	10	10	10	10	10	10	8	8	2	2	0	0	0	0	0	0
Sample mean, \overline{X}	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.15	0.15	No Data	No Data	No Data	No Data	No Data	No Data
Standard deviation, s	1.4628E-17	7.3142E-18	7.3142E-18	7.3142E-18	7.3142E-18	7.3142E-18	7.418E-18	7.418E-18	0.07071068	0.07071068						
Number of non-detects	10	10	10	10	10	10	8	8	0	0						
Set non-detect values to:	Detection limit	Half detection limit	Half detection limit	Half detection limit	: Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	t Half detection limi	t Half detection limit	t Half detection limit	Half detection limit
Outliers?	No	No	No	No	No	No	No	No	N/A (n<3)	N/A (n<3)						
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	N/A (n<3)	N/A (n<3)						
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto
Test scenario:	Planning: is true m	ean lower than critic	al concentration (μ <	: Cc)?	Evidence	e level required:	95%	Use Normal distrib	ution to test for outli	ers 🔻						
t statistic, t ₀ (or k ₀)	-1.6213E+17	-7.13154E+19	-8.60152E+19	-6.9586E+19	-3.97542E+19	-9.64974E+20	-9.79732E+19	-2.15411E+20	-5137	-11297						
Upper confidence limit (on true mean concentration, μ)	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.36794495	0.36794495						
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%						
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level						
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc						
Select dataset	Οy	Оү	Οy	Οy	ΟY	Оү	Οy	⊚ Y	Οy	ΟY	Οy	ΟY	Οy	Оү	ΟY	ΟY
Back to data	Go to	outlier te	st	Go to no	ormality te	est	Show i	ndividual	summary							

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	PAHs (Benzo(a)anthracene - Benzo(ghi)perylene)
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)?
Date	1 November 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Go to summary Data sheet Project details

				Chrysene	Benzo(b)fluo	Benzo(k)fluo	Benzo(a)pyre	Indeno(123-	Dibenzo(ah)a	Benzo(ghi)p	Outliers:	Outliers:	Outliers:	Outliers:	Outliers:	Outliers:		
		Sample	racene		ranthene	ranthene	ne	cd)Pyrene	nthracene	erylene	Benzo(a)anth racene	Chrysene	nthene	Benzo(a)pyren e	Indeno(123- cd)Pyrene	Benzo(ghi)per ylene		i l
Easting	Northing	ID.													- J. J. J. J. J. J. J. J. J. J. J. J. J.	,		i l
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
TP01	0.9	MG			<0.1	<0.1		<0.1		<0.1	mgmg	g.v.g	g.ng	g.n.g	g.ng	g.n.g		
TP02	2.7					<0.1		<0.1		<0.1								
TP16					<0.1	<0.1		<0.1		<0.1								
TP17	0.8	MG							<0.1		0.4	0.4	0.3	0.4	0.3	0.3		
TP18	1.85	MG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
TP20					<0.1	<0.1		<0.1		<0.1								
TP21	1.45				<0.1	<0.1		<0.1		<0.1								
TP22	0.5	MG	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1								
																		ļ
																		ļ
																!		ļ—— !
																 		
																†		
TP24	1	MG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
TP25	0.95	MG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
TP25	3.4	MG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
																		
																		
																!		
																 		
																-		
													-			-		
													-			-		
																 		
																 		
																+		
																-		
																1		
					İ	İ	İ				l l		İ			1		

ient/client ref: Brookbanks Consulting Ltd vject ref: CEC-16-458 te ref: Adastral Park, Ipswich ata description: Made Ground nutaminant(s): PAHs (Benzo(a)anthracene- enzo(phil)erylene) set scenario: Planning ate: 1 November 2016	Benzo(a)anthr acene (mg/kg)	Chrysene (mg/kg)	Benzo(b)fluora nthene (mg/kg)	Benzo(k)fluora nthene (mg/kg)	Benzo(a)pyren e (mg/kg)	Indeno(123- cd)Pyrene (mg/kg)	Dibenzo(ah)an thracene (mg/kg)	Benzo(ghi)per ylene (mg/kg)		Outliers: Chrysene (mg/kg)	Outliers: Benzo(k)fluora nthene (mg/kg)	Outliers: Benzo(a)pyren e (mg/kg)	Outliers: Indeno(123- cd)Pyrene (mg/kg)	Outliers: Benzo(ghi)per ylene (mg/kg)			
Critical concentration, C _c	5.9	12	1.9	56	2	21	0.17	213	5.9	12	56	2	21	213			
Notes																	
Sample size, n	10	10	9	10	10	10	11	10	1	1	1	1	1	1	0	0	0
Sample mean, \overline{x}	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.4	0.4	0.3	0.4	0.3	0.3	No Data	No Data	No Data
Standard deviation, s	1.46285E-17	7.31424E-18	7.35981E-18	7.31424E-18	7.31424E-18	7.31424E-18	7.27757E-18	7.31424E-18	0	0	0	0	0	0			
Number of non-detects	10	10	9	10	10	10	11	10	0	0	0	0	0	0			
Set non-detect values to:	Detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit
Outliers?	No	No	No	No	No	No	No	No	N/A (n<3)	N/A (n<3)	N/A (n<3)	N/A (n<3)	N/A (n<3)	N/A (n<3)			
Distribution	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Non-normal	Single value	Single value	Single value	Single value	Single value	Single value			
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto 🔻
Test scenario:	Planning: is true mea	an lower than critical of	concentration (μ < Cc)	? 🔻	Evidence	e level required:	95%	Use Normal distribut	ion to test for outliers								
t statistic, t ₀ (or k ₀)	-1.2538E+18	-5.16653E+18	-7.54096E+17	-2.41897E+19	-8.43074E+17	-9.05764E+18	-5.46879E+16	-9.2068E+19	N/A	N/A	N/A	N/A	N/A	N/A			
Upper confidence limit (on true mean concentration, μ)	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.4	0.4	0.3	0.4	0.3	0.3			
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%			
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	_		
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc			
Select dataset	Ογ	Оү	Оү	Оү	Оү	Оү	Оү	⊚ Y	Оү	ΟY	Оү	Οy	Οy	Оү	Оү	Оү	Ογ
Back to data	Go to	outlier tes	st	Go to no	ormality te	st	Show	individual	summary								

Client/client ref	Brookbanks Consulting Ltd
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	TPH (banded)
Test scenario	Planning: is true mean lower than critical concentration (µ < Cc)? ▼
Date	1 November 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details TPH (C6-C8) TPH (C12-C16) TPH (C16- TPH (21-C35) TPH (C35-40) Outliers: Outliers: TPH (21-C35) TPH (C12-TPH (C16-C16) C21) Easting Northing mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TP01 TP02 0.2 MG <0.1 80 31 2.7 MG TP02 <0.1 1.4 MG <0.1 4.1 MG 0.8 MG <0.1 13 0.2 MG <0.1 TP18 1.1 MG <0.1 <1 <1 2 TP18 1.85 MG 51 0.2 MG TP20 <0.1 41 TP20 0.9 MG <0.1 TP21 1.45 MG <0.1 4 <1 TP21 <0.1 45 280 TP22 <0.1 TP22 54 <0.1 TP23 0.2 MG <0.1 100 44 <1 TP23 MG <0.1 110 28 14 TP23 3 MG <0.1 35 TP24 0.25 MG <0.1 85 25 TP24 <0.1 TP24 3.5 MG <0.1 22

Ilient/client ref: Brookbanks Consulting Ltd roject ref: GEG-16-458 itle ref: Adastral Park, Ipswich ata description: Made Ground ontalminant(s): TPH (banded) est scenario: Planning late: 1 November 2016	TPH (C6-C8) (mg/kg)	TPH (C8-C10) (mg/kg)	TPH (C10-C12) (mg/kg)	TPH (C12-C16) (mg/kg)	TPH (C16-C21) (mg/kg)	TPH (21-C35) (mg/kg)	TPH (C35-40)	Outliers: TPH (C12-C16) (mg/kg)	Outliers: TPH (C16-C21) (mg/kg)	Outliers: TPH (21-C35) (mg/kg)			
Iser details: FT													
Critical concentration, C _c	7	13	61	185	474	1770	1770	185	474	1770			
Notes													
Sample size, n	23	23	23	21	20	22	23	2	2	1	0	0	0
Sample mean, \overline{X}	0.05	0.5	0.5	1	4.95	34.5909091	14.673913	9.5	64.5	280	No Data	No Data	No Data
Standard deviation, s	1.419E-17	0	0	0.90829511	4.57078825	34.8567259	14.8420538	7.77817459	50.2045815	0			
Number of non-detects	23	23	23	14	7	2	3	0	0	0			
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	: Half detection limit
Outliers?	No	No	No	No	No	No	No	N/A (n<3)	N/A (n<3)	N/A (n<3)			
Distribution	Non-normal	Single value	Single value	Non-normal	Non-normal	Non-normal	Non-normal	N/A (n<3)	N/A (n<3)	Single value			
Statistical approach	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto: Chebychev	Auto	Auto	Auto
Test scenario:	Planning: is true me	ean lower than critic	al concentration (µ <	: Cc)? ▼	Evidence	e level required:	95%	Use Normal distribi	ition to test for outlie	ers 🔻]		
t statistic, t ₀ (or k ₀)	-2.34896E+18	N/A	N/A	-928.3259616	-458.9263937	-233.5213631	-567.1889005	-31.90909091	-11.53521127	N/A			
Upper confidence limit (on true mean concentration, µ)	0.05	0.5	0.5	1.86396098	9.40505331	66.9839748	28.1637557	33.4739442	219.240912	280			
Evidence level	100%	100%	100%	100%	100%	100%	100%	100%	99%	100%			
Base decision on:	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level	evidence level			
Result	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc	μ < Cc			
Select dataset	ΟY	Оү	ΟY	ΟY	ΟY	⊚ Y	ΟY	Оү	ΟY	ΟY	Оү	ΟY	Οy
Back to data	Go to	outlier te	st	Go to no	ormality te	est	Show i	ndividual	summary				

Client/client ref	Brookbanks
Project ref	GEG-16-458
Site ref	Adastral Park, Ipswich
Data description	Made Ground
Contaminant(s)	Benzo(a)pyrene surrogate marker
Test scenario	Planning: is true mean lower than critical concentration (µ < Cc)? ▼
Date	2 December 2016
User details	FT
Statistics calculate	or (version 1)

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any par of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

Data sheet Go to summary Project details Benzo(a)pyre Outliers: ne Benzo(a)pyre Easting Northing mg/kg mg/kg 0.2 MG 1.3 MG 0.8 MG 0.2 MG 1.1 MG 0.4 0.1 0.2 MG TP21 TP22 TP23 0.2 MG 0.7 TP23 1.6 TP23 3 MG 0.4 TP24 0.25 MG TP24

Client/client ref: Brookbanks Project ref: GEG-16-458	Benzo(a)pyren e (mg/kg)	Outliers: Benzo(a)pyren]
Site ref: Adastral Park, Ipswich Oata description: Made Ground Contaminant(s): Benzo(a)pyrene surrogate narker	· (gg)	e (mg/kg)							
Test scenario: Planning Date: 2 December 2016									
Critical concentration, C _c	0.98	0.98							
Notes									
Sample size, n	12	1	0	0	0	0	0	0	
Sample mean, $\overline{\overline{\chi}}$	0.625	20	No Data						
Standard deviation, s	0.49012985	0							
Number of non-detects	0	0							
Set non-detect values to:	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	Half detection limit	-
Outliers?	No	N/A (n<3)							
Distribution	Normal	Single value							
Statistical approach	Auto: One-sample t-	Auto: Chebychev	Auto	Auto	Auto	Auto	Auto	Auto	_
Test scenario:	Planning: is true me	an lower than critical	concentration (µ < 0	Cc)? ▼	Evidence	level required:	95%	Use Normal distribu	tion to t
t statistic, t ₀ (or k ₀)	-2.509041361	N/A							
Upper confidence limit (on true mean concentration, μ)	0.87909669	20							
Evidence level	99%	0%							
Base decision on:	evidence level	evidence level							•
Result	μ < Cc	μ ≥ Cc							
Select dataset	● Y	ΟY	ΟY	ΟY	ΟY	Оү	ΟY	ΟY	
Back to data	Go to	outlier tes	st	Go to no	rmality te	st	Show i	ndividual	:

APPENDIX G

CONTAMINATION ASSESSMENT TABLES

Table 1A. Direct Comparison with Critical Concentrations - Natural Ground (Area 1)

Determinand	Units	Critical Concentration (Cc)	TP09 (0.50m)	No. of samples exceeding criteria*
Metals, Semi- Metal and N	Non- Metals			
Arsenic	mg/kg	32	11	0 (1)
Boron	mg/kg	291	<1	0 (1)
Cadmium	mg/kg	5	<1	0 (1)
Chromium (total)	mg/kg	130	12	0 (1)
Chromium VI	mg/kg	4.3	<1	0 (1)
Copper	mg/kg	2330	2	0 (1)
Lead	mg/kg	200	7	0 (1)
Mercury	mg/kg	1	<1	0 (1)
Nickel	mg/kg	130	7	0 (1)
Zinc	mg/kg	3550	17	0 (1)
Selenium	mg/kg	350	<3	0 (1)
Inorganics				
Cyanide (total)	mg/kg	43	<1	0 (1)
Cyanide (free)	mg/kg	43	<1	0 (1)
Petroleum Hydrocarbon				
C ₆ to C ₈ TPH	mg/kg	7	<0.1	0 (1)
C ₈ to C ₁₀ TPH	mg/kg	13	<1	0 (1)
C ₁₀ to C ₁₂ TPH	mg/kg	61	<1	0 (1)
C ₁₂ to C ₁₆ TPH	mg/kg	185	<1	0 (1)
C ₁₆ to C ₂₁ TPH	mg/kg	474	1	0 (1)
C ₂₁ to C ₃₅ TPH	mg/kg	1770	16	0 (1)
C ₃₅ to C ₄₀ TPH	mg/kg	1770	2	0 (1)
Polyaromatic Hydrocarb				
Naphthalene	mg/kg	0.85	<0.1	0 (1)
Acenaphthylene	mg/kg	165	<0.1	0 (1)
Acenaphthene	mg/kg	199	<0.1	0 (1)
Fluorene	mg/kg	161	<0.1	0 (1)
Phenanthrene	mg/kg	92	<0.1	0 (1)
Anthracene	mg/kg	2232	<0.1	0 (1)
Fluoranthene	mg/kg	257	<0.1	0 (1)
Pyrene	mg/kg	565	<0.1	0 (1)
Benzo(a)Anthracene	mg/kg	5.9	<0.1	0 (1)
Chrysene	mg/kg	12	<0.1	0 (1)
Benzo(b)fluoranthene	mg/kg	1.9	<0.1	0 (1)
Benzo(k)fluoranthene	mg/kg	56	<0.1	0 (1)
Benzo(a)pyrene	mg/kg	2.0	<0.1	0 (1)
Indeno(123-cd)Pyrene	mg/kg	21	<0.1	0 (1)
Dibenzo(ah)anthracene	mg/kg	0.17	<0.1	0 (1)
Benzo(ghi)Perylene	mg/kg	213	<0.1	0 (1)
Others				
Phenol	mg/kg	198	<1	0 (1)
pН	-	-	6.8	-
SOM	%	-	0.1	-

Table 1B. Direct Comparison with Critical Concentrations - Natural Ground (Area 2)

Determinand	Units	Critical Concentration (Cc)	TP17 (2.30m)	No. of samples exceeding criteria*
Metals, Semi- Metal and N	ion- Metals			
Arsenic	mg/kg	32	16	0 (1)
Boron	mg/kg	291	<1	0(1)
Cadmium	mg/kg	5	<1	0(1)
Chromium (total)	mg/kg	130	20	0 (1)
Chromium VI	mg/kg	4.3	<1	0 (1)
Copper	mg/kg	2330	53	0 (1)
Lead	mg/kg	200	360	1(1)
Mercury	mg/kg	1	1	0 (1)
Nickel	mg/kg	130	17	0 (1)
Zinc	mg/kg	3550	370	0(1)
Selenium	mg/kg	350	<3	0()
Inorganics	<u> </u>			
Cyanide (total)	mg/kg	43	<1	0 (1)
Cyanide (free)	mg/kg	43	<1	0 (1)
Petroleum Hydrocarbon	S	10		
C ₆ to C ₈ TPH	mg/kg	7	<0.1	0 (1)
C ₈ to C ₁₀ TPH	mg/kg	13	<1	0 (1)
C ₁₀ to C ₁₂ TPH	mg/kg	61	<1	0 (1)
C ₁₂ to C ₁₆ TPH	mg/kg	185	<1	0 (1)
C ₁₆ to C ₂₁ TPH	mg/kg	474	<1	0 (1)
C ₂₁ to C ₃₅ TPH	mg/kg	1770	<1	0 (1)
C ₃₅ to C ₄₀ TPH	mg/kg	1770	<1	0 (1)
Polyaromatic Hydrocarb	ons			
Naphthalene	mg/kg	0.85	<0.1	0 (1)
Acenaphthylene	mg/kg	165	<0.1	0 (1)
Acenaphthene	mg/kg	199	<0.1	0 (1)
Fluorene	mg/kg	161	<0.1	0 (1)
Phenanthrene	mg/kg	92	<0.1	0 (1)
Anthracene	mg/kg	2232	<0.1	0 (1)
Fluoranthene	mg/kg	257	<0.1	0 (1)
Pyrene	mg/kg	565	<0.1	0 (1)
Benzo(a)Anthracene	mg/kg	5.9	<0.1	0 (1)
Chrysene	mg/kg	12	<0.1	0 (1)
Benzo(b)fluoranthene	mg/kg	1.9	<0.1	0 (1)
Benzo(k)fluoranthene	mg/kg	56	<0.1	0 (1)
Benzo(a)pyrene	mg/kg	2.0	<0.1	0 (1)
Indeno(123-cd)Pyrene	mg/kg	21	<0.1	0 (1)
Dibenzo(ah)anthracene	mg/kg	0.17	<0.1	0 (1)
Benzo(ghi)Perylene	mg/kg	213	<0.1	0 (1)
Others				
Phenol	mg/kg	198	<1	0 (1)
pН	-	-	7.2	-
SOM	%	-	0.03	-

Table 2A. Groundwater Analysis Results (16th November 2016)

Table 2A. Groundwa	ter Ana	aiysis K	esuits (10	D 1101	ember 2	2010)		
D	** *	CP18	CP19	CP20	CP26	CP28	Screening	No. of samples
Determinand	Units	(9.10m)	(10.45m)	(9.50m)	(11.50m)		Criteria	exceeding
		(),	()	().0)	(==:0===)	(==, 10==)		criteria*
Metals, Semi- Metal and Non	- Metals	!						
Arsenic	ug/l	5.2	8.3	10	0.4	0.2	10 ^(a)	o (5)
Boron	mg/l	0.23	0.31	0.19	0.08	0.04	1000 ^(a)	0 (5)
Cadmium	ug/l	<0.02	0.08	0.05	0.03	<0.02	5 ^(a)	o (5)
Chromium	ug/l	<1	<1	<1	<1	<1	50 ^(a)	o (5)
Chromium VI	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	50 ^(a)	0 (5)
Copper	ug/l	1.1	1.8	1.2	0.9	0.8	2000 ^(a)	0 (5)
Lead	ug/l	0.3	3.3	1.8	0.3	<0.3	10 ^(a)	0 (5)
Mercury	ug/l	0.16	0.12	<0.05	<0.05	<0.05	1 ^(a)	o (5)
Nickel	ug/l	7	8	11	3	<1	20 ^(a)	o (5)
Selenium	ug/l	1.1	0.9	2.1	<0.5	<0.5	10 ^(a)	0 (5)
Zinc	ug/l	8	7	15	14	5	5000 ^(a)	o (5)
Inorganics	- 01 -			·		9	<u> </u>	- (0)
Cyanide (Total)	ug/l	<0.05	<0.05	<0.05	<0.05	<0.05	50 ^(a)	o (5)
Sulphate	mg/l	33	120	70	72	37	250 ^(b)	0 (5)
Sulphide	ug/l	<0.05	0.06	<0.05	<0.05	<0.05	0.25 ^(a)	0 (5)
Total Petroleum Hydrocarbons								- (0)
>C ₆ to C ₈ TPH	mg/l	<0.01	<0.01	<0.02	<0.01	<0.01	-	-
>C ₈ to C ₁₀ TPH	mg/l	<0.02	<0.01	<0.01	<0.01	<0.01	-	-
>C ₁₀ to C ₁₂ TPH	mg/l	<0.02	<0.01	<0.01	<0.01	<0.01	-	-
>C ₁₂ to C ₁₆ TPH	mg/l	0.07	0.56	1.4	<0.01	<0.01	_	_
>C ₁₆ to C ₂₁ TPH	mg/l	0.27	1.7	3.9	<0.01	<0.01	_	_
>C ₂₁ to C ₃₅ TPH	mg/l	1.5	6	12	<0.01	<0.01	-	_
>C ₃₅ to C ₄₀ TPH	mg/l	0.36	2.2	3	<0.01	<0.01	_	_
TPH (Sum) Total	mg/l	1.7	10	20	<0.01	<0.01	0.05 ^(c)	3 (5)
Polyaromatic Hydrocarbons	- Oi	,						0 (0)
Naphthalene	ug/l	<0.1	<0.5	<0.1	<0.05	< 0.05	10 ^(a)	o (5)
Acenaphthylene	ug/l	2	2.5	15	<0.05	<0.05	-	-
Acenaphthene	ug/l	2	2.5	14	<0.05	<0.05	-	-
Fluorene	ug/l	3	2.5	15	<0.05	<0.05	_	_
Phenanthrene	ug/l	38	24	68	0.05	<0.05	-	-
Anthracene	ug/l	17	7.5	25	0.05	<0.05	-	-
Fluoranthene	ug/l	110	64	130	0.40	<0.05	-	-
Pyrene	ug/l	97	58	110	0.40	<0.05	-	-
Benzo(a)anthracene	ug/l	48	25	44	0.15	<0.05	-	-
Chrysene	ug/l	53	31	50	0.2	<0.05	-	-
Benzo(b)fluoranthene	ug/l	40	22	38	0.1	<0.05	-	-
Benzo(k)fluoranthene	ug/l	42	29	37	0.15	<0.05	-	-
Benzo(a)pyrene	ug/l	45	<u> </u>	44	<0.05	<0.05	0.01 ^(a)	3 (5)
Indeno(123-cd)pyrene	ug/l	26	16	25	0.05	<0.05	-	-
Dibenzo(ah)anthracene	ug/l	9	5	7	<0.05	<0.05	-	-
Benzo(ghi)perylene	ug/l	30	19	30	0.05	<0.05	-	_
Total PAHs	ug/l	570	330	650	1.6	<0.05	0.1 ^(a)	4 (5)
Phenols (Total-Mono)	ug/l	<1	<1	<1	<1	<1	0.1 ^(a)	0 (5)
Others				· ·-				- (0)
pH	_	7.1	8.4	7.5	7.9	7.6	-	-
Hardness	mg/l	820		,.,	1.2	,	_	_
Notes: *Number of sample			1 1 4	C 1 3	l l t			

Notes: *Number of samples in brackets; * Total number of samples in bracket. #Laboratory Detection above Assessment Criteria

N.D. Not Detected

(a) UK Drinking Water Standard (DWS).

(b) EQS Freshwater

(c) The Surface Water (Abstraction for Drinking Water) Regulations 1996. DW1 value.

Table 2B. Groundwater Analysis Results (24th November 2016)

1 able 2B. Groundwater Analysis Results (24 th November 2016)									
Determinand	Units	GD 0	G.D.	CID.	CTD.	CD (OD 0	a .	No. of
		CP18	CP19	CP20	CP25	CP26	CP28	Screening	samples
		(9.50m)	(4.50m)	(9.50m)	(11.00m)	(11.20m)	(10.50m)	Criteria	exceeding
M + 1 G ' M + 1 1N	37.					ļ			criteria*
Metals, Semi- Metal and Non- Metals									
Arsenic	ug/l	5.7	11	8.4	<0.2	0.2	0.3	10 ^(a)	1(6)
Boron	mg/l	0.22	0.51	0.20	0.06	0.05	0.05	1000 ^(a)	0 (6)
Cadmium	ug/l	<0.02	0.06	0.02	<0.02	<0.02	<0.02	5 ^(a)	0 (6)
Chromium	ug/l	<1	<1	<1	<1	<1	1	50 ^(a)	0 (6)
Chromium VI	ug/l	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	50 ^(a)	0 (6)
Copper	ug/l	<0.5	1.3	3.0	1.3	0.5	1.1	2000 ^(a)	0 (6)
Lead	ug/l	<0.3	2.4	2.0	<0.3	<0.3	0.3	10 ^(a)	0 (6)
Mercury	ug/l	<0.05	0.13	<0.05	<0.05	<0.05	< 0.05	1 ^(a)	o (6)
Nickel	ug/l	6	6	18	1	1	<1	20 ^(a)	o (6)
Selenium	ug/l	1.0	0.7	2.1	<0.5	<0.5	<0.5	10 ^(a)	o (6)
Zinc	ug/l	3	6	49	5	7	4	5000 ^(a)	o (6)
Inorganics									
Cyanide (Total)	ug/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	50 ^(a)	o (6)
Sulphate	mg/l	19	150	28	67	67	35	250 ^(b)	o (6)
Sulphide	ug/l	0.05	0.05	0.05	< 0.05	0.05	0.05	$0.25^{(a)}$	o (6)
Total Petroleum Hydrocarbons									
>C ₆ to C ₈ TPH	mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
>C ₈ to C ₁₀ TPH	mg/l	<0.03	<0.02	<0.02	<0.01	<0.01	<0.01	-	-
>C ₁₀ to C ₁₂ TPH	mg/l	<0.03	< 0.02	0.04	<0.01	< 0.01	< 0.01	-	-
>C ₁₂ to C ₁₆ TPH	mg/l	<0.03	0.03	0.3	<0.01	<0.01	<0.01	-	_
>C ₁₆ to C ₂₁ TPH	mg/l	<0.03	0.26	0.75	<0.01	<0.01	<0.01	-	_
>C ₂₁ to C ₃₅ TPH	mg/l	<0.03	1.0	0.63	<0.01	<0.01	< 0.01	-	_
>C ₃₅ to C ₄₀ TPH	mg/l	<0.03	0.20	0.03	<0.01	<0.01	<0.01	-	_
TPH (Sum) Total	mg/l	<0.03	1.5	1.8	N.D	N.D	N.D	0.05 ^(c)	2 (6)
Polyaromatic Hydrocarbons									
Naphthalene	ug/l	0.07	0.60	0.17	<0.01	<0.01	0.01	10 ^(a)	o (6)
Acenaphthylene	ug/l	0.04	0.15	0.03	<0.01	<0.01	0.05	-	-
Acenaphthene	ug/l	0.10	0.68	0.14	<0.01	<0.01	0.05	-	-
Fluorene	ug/l	0.12	0.53	0.14	<0.01	<0.01	0.04	-	_
Phenanthrene	ug/l	0.35	1.2	0.33	0.01	0.01	0.04	_	_
Anthracene	ug/l	0.20	0.27	0.18	0.01	0.01	0.02	_	_
Fluoranthene	ug/l	0.47	1.2	0.23	0.02	0.02	0.02	_	_
Pyrene	ug/l	0.39	1.1	0.18	<0.01	<0.01	0.02	-	_
Benzo(a)anthracene	ug/l	0.17	0.53	0.05	<0.01	<0.01	0.01	_	_
Chrysene	ug/l	0.14	0.55	0.04	<0.01	<0.01	0.01	_	_
Benzo(b)fluoranthene	ug/l	0.15	0.70	0.03	<0.01	<0.01	0.01	_	_
Benzo(k)fluoranthene	ug/l	0.13	0.56	0.02	<0.01	<0.01	0.01	_	_
Benzo(a)pyrene	ug/l	0.15	0.71	0.03	<0.01	<0.01	<0.01	0.01 ^(a)	3 (6)
Indeno(123-cd)pyrene	ug/l	0.09	0.53	0.02	<0.01	<0.01	0.01	-	<u> </u>
Dibenzo(ah)anthracene	ug/l	0.03	0.17	0.02	<0.01	<0.01	<0.01	-	
Benzo(ghi)perylene	ug/l	0.10	0.59	0.01	<0.01	<0.01	<0.01		
Total PAHs	ug/l	2.7	10	1.6	0.04	0.04	0.30	0.1 ^(a)	4 (6)
Phenols (Total-Mono)	ug/l	0.6	1.6		<0.1	<0.1	<0.1	0.1 ^(a)	
Others	ug/1	0.0	1.0	0.4	\U.1	\U.1	\U.1	0.1	3 (6)
pH	_	7.0	8.9	7.2	7.0	7.5	7.8	_	
Hardness	mg/l	7.3	0.9	/.2	7.3	7.5	300		
Notes: *Number of sar		hroakota:	Total nun	abor of an	mples in h	roolzot	300	-	

Notes: *Number of samples in brackets; * Total number of samples in bracket.
#Laboratory Detection above Assessment Criteria

N.D. Not Detected

(a) UK Drinking Water Standard (DWS).

(b) EQS Freshwater

(c) The Surface Water (Abstraction for Drinking Water) Regulations 1996. DW1 value.

APPENDIX H

GEOTECHNICAL TESTING

Contract Number: 32568

Client's Reference: GEG-16-458 PO 2298 Report Date: 26-10-2016

> Client GEG Limited **GEG House** 17 Graham Road

> > Malvern Worcestershire

WR14 2HR

Contract Title: Adastral Park, Ipswich

For the attention of: Flo Trahair

Date Received: 28-09-2016 Date Commenced: 28-09-2016 Date Completed: 26-10-2016

Test Description Qty **PSD Wet Sieve method** 14 1377: 1990 Part 2: 9.2 - * UKAS **Disposal of Samples on Project**

Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director)

GEO Site & Testing Services Ltd

Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Notes:

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32568 Depth from (m): 1.60

Sample Number:

В

Hole Number: TP3 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown gravelly sandy silty CLAY

			Fine	Mediun	n Coarse	Fine	Mediun	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND			GRAVE	İ	COBBLES		
							0,12			0.0	_			
	0.1	Ī												
BS Test	%			0	0 0		0 (
Sieve	Passing		0.002	0.00	0.030		0.200	5	3. 0		2 9	200		
125	100		- 1 				$\overline{\Box}$							100
90	100													1
75 73	100 100													90
63 50	100							 					+++++	1
37.5	94												+++++	80
28	94 91												+++++	1
20	91												+++++	70
14	89						1	++++					++++++	┨
10	88	<u>6</u>											+++++	60
6.3	86	Percentage Passing.											+++++	1
5.0	85	е <u>Б</u>											+++++	50
3.35	84													1
2.00	83	- Je											+++++	40
1.18	82	Pe —						+++-+					+++++	1
0.60	79												+++++	30
0.425	76							+++-+					+++++	1
0.300	72												++++++++++++++++++++++++++++++++++++	20
0.212	68												+++++	1
0.150	64												++++++++++++++++++++++++++++++++++++	10
0.063	59					+++		+++-+		+++			++++	1
		0.001		0.01		111				10		100		J 0
Particle	%	0.001		0.01		0.1	Par	icle Size (n	nm).	10		100	10	000
								•						

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

	Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
	59	24	17	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32568 Depth from (m): 0.95

Sample Number:

В

Hole Number: TP4 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown slightly silty sandy GRAVEL

			Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND			GRAVEL		COBBLES		
BS Test	%													
Sieve	Passing	0000	900		0.030	90	0.200	9	0.9	20	9	200		
125	100		5 6		0 0	j 1111	o ö	· ·	, ,	1111	9	N N		100
90	100					Ш	\square				$+\!\!+\!$			
75	100						\square				$\perp \prime \perp$			90
63	100		$\perp \perp \perp \perp$		$\perp \perp \perp \perp \perp$	Ш	\square				-//+			
50	92					Ш	\square				/			80
37.5	87		\perp		\perp	Ш	\square				/			
28	81									/				70
20	68					Ш				/				
14	58	ج ا			$\perp \perp \perp \perp \perp$	Ш								60
10	49	sing								$\parallel \parallel / \perp$				00
6.3	39	Percentage Passing.								$\square V \perp$				50
5.0	37	age								\perp				50
3.35	35	enta												40
2.00	32	erc												40
1.18	29	<u> </u>												30
0.60	21													30
0.425	17													20
0.300	12													20
0.212	7													40
0.150	4													10
0.063	2													0
Dantiala	0/	0.001		0.01		0.1		1		10		100	1000	0
Particle	%						Parti	cle Size (n	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
2	30	68	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.85

Hole Number: TP5 Depth to (m):
Sample Type:

Location: Adastral Park, Ipswich

Description: Brown slightly clayey silty gravelly SAND

				1				1	T	T				
		01.41/	Fine	Mediu	m Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND			GRAVEL	_	COBBLES		
												-		
BS Test	%	1												
Sieve	Passing		2	9	90	2	8 9	2 -	l 			1		
125	100	ł	0.002	900:0	0.030	5	0.200	5	3 9	5	9	200		
90	100													100
75	100					Ш				\Box			11111	i
63	100			Ш		Ш				/			11111	90
50	95					Ш				/			11111	i
37.5	95			+++-		Ш				/			11111	- 80
28	92			Ш		Ш				/			11111	il
20	89												11111	70
14	79									/			11111	il
10	71	ģ											11111	60
6.3	64	assi											11111	ī
5.0	62	Je P											11111	50
3.35	61	ıtağ —											+++++	i
2.00	59	Percentage Passing								+++			+++++	40
1.18	56	8 -											++++++	il
0.60	45					Ш				++			++++++	30
0.425	38												++++++	il
0.300	31					/							11111	20
0.212	23			+++-						++			+++++	i
0.150	17	I		++++		Ш				+++			++++++	10
0.063	12	l ⊨		++++-		HH		+++					++++	đ
		0.001		0.01		0.1		1		10		100		0
Particle	%	0.001		0.01		0.1	Part	icle Size (n	nm).	10		100	10	000
Diameter	Doooloo	1						•	-					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
12	47	41	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.60

Hole Number: TP7 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown slightly clayey silty sandy GRAVEL. With some cobbles

				Fine	Mediur	m Coarse	Fine	Med	ium Coa	irse F	Fine	Medium	Coarse			
		CLAY	/		SILT			SAN	ID.			GRAVEL		COBBLES		
														-		
BS Test	%															
Sieve	Passing		02	, ,		0.030	3	0.200	00	2.00	0					
125	100	_	0.002	900 0		0.0	5	0.2	0.600	2.0	6.0	20	9	200		1 00
90	100															
75	100															90
63	85	L] 70
50	66												$\perp \! \! \perp \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \! \!$			80
37.5	59	L											$\perp \! \! \perp \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$			1 00
28	54	L											$\perp \! \! \perp \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$			70
20	49												$\perp \! \! \perp \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$			
14	46												$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			60
10	43	sing														00
6.3	39	Pas														50
5.0	38	Percentage Passing.														30
3.35	37	art:														40
2.00	36	erc								_						40
1.18	34	<u> </u>														30
0.60	31															30
0.425	28															20
0.300	25															20
0.212	19															10
0.150	14															
0.063	10															
Dantiala	0/	0.00	1		0.01		0.1		1		_	10		100	1	000
Particle	%							F	Particle Siz	ze (mm)	١.					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
10	26	49	15	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Date: 26.10.16

В

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32568 Depth from (m): 1.60

Hole Number: TP8 Depth to (m):

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich
Description: Brown gravelly silty clay SAND

				Fine	Medium	Coarse	Fine	Mediur	n Coarse	Fine	Medium	Coarse			
		CLAY			SILT			SAND			GRAVEL		COBBLES		
													 		
BS Test	%														
Sieve	Passing		0.002	900		0.030		0.200	0.600	3 0	50	0	200		
125	100	_	0.0			- i	5	0 0		, 4	Ñ	09	×		100
90	100				Ш		Ш					$\perp \prime \perp$		ШШ]
75	100				Ш		Ш					$\prime \bot$			90
63	100											/] ~
50	100				Ш		Ш				$\parallel \! \! \perp$	$\perp \perp \perp \perp$			80
37.5	93				Ш							$\perp \perp \perp \perp$] ""
28	90				Ш		Ш					$\perp \perp \perp \perp$			70
20	83				Ш		Ш					$\perp \perp \perp \perp$] ′ ັ
14	80	ا نا													60
10	77	sing] "
6.3	72	Pas													50
5.0	72	age						$I \sqcup I$] 30
3.35	71	enta						1							40
2.00	69	Percentage Passing] 40
1.18	68	Ľ													30
0.60	64] 30
0.425	61														20
0.300	55] 20
0.212	47														10
0.150	39														10
0.063	30														0
Dantial	0/	0.001	1		0.01		0.1		1		10		100	10	000
Particle	%							Par	ticle Size (r	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
30	39	31	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.40

Hole Number: TP9 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich
Description: Brown silty gravelly SAND

						0	F:	1.4	11	2	F!	NA III		1	-		
		CLAV	,	Fine	Mediu	m Coarse	Fine	ivied	iium C	Coarse	Fine	Medium	Coarse	COBBLE	C		
		CLAY			SILT			SAI	ND			GRAVE	L	COBBLE	3		
															-		
BS Test	%	ĺ															
Sieve	Passing		22	90		0.030	I 0	8	00	9	0		_				
125	100		0.002	0.006		0.0	0.00	0.200	0.600	2.00	0.9		20	200			100
90	100	Г													$\Box \Box$	\prod	100
75	100															Ш	90
63	100																90
50	100				Ш										\Box	Ш	80
37.5	100									/						Ш	80
28	98								$\square \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$								70
20	98															Ш	70
14	95	Ⅰ . Γ															,,
10	93	ing														Ш	60
6.3	90	ass		$\neg \neg \neg$												Ш	
5.0	89	ge														Ш	50
3.35	88	nta						1/							$\Pi\Pi$	Ш	
2.00	86	Percentage Passing		$\neg \Box$	Ш			7							$\top \top \top$	Ш	40
1.18	84	٦		$\neg \neg$	Ш			1							+++	Ш	
0.60	65			$\neg \neg$	Ш			1							$\top \top \top$	Ш	30
0.425	58			$\neg \Box$	Ш										+++	Ш	
0.300	51				Ш		1111 <i>1</i>								+++	Ш	20
0.212	38				Ш										TTT	Ш	
0.150	16			$\rightarrow \rightarrow \rightarrow$											+++	Ш	10
0.063	5			\neg	Ш		1111								$\dagger \dagger \dagger \dagger$	Ш	
		0.00	1		0.01		0.1			1		10		100		100	00
Particle	%	2.30							Particle	Size (m	ım).					. 50	

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
5	81	14	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Date: 26.10.16

В

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32568 Depth from (m): 1.70

Hole Number: TP10 Depth to (m):

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown clayey silty gravelly SAND

					Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse			
			CLA'	Y		SILT			SAND			GRAVEL		COBBLES		
I	BS Test	%	Ī													
	Sieve	Passing		02	90		0.030		0.200	00.	0.9			. 0		
	125	100		0.002	900:0		0.0	3	0.0	2	9	20	9	500		100
	90	100														100
	75	100														90
	63	100	L													,,,
	50	100	L													80
	37.5	100														
	28	100	L													70
	20	97														,,,
	14	89														60
	10	84	sing													00
	6.3	78	Pas													50
	5.0	77	age													30
	3.35	75	enta													40
	2.00	72	Percentage Passing.													40
	1.18	69	<u> </u>						/							30
	0.60	60						/								30
	0.425	53						\mathbb{Z}								20
	0.300	43														20
	0.212	31														10
	0.150	22														10
	0.063	15														
ı	Dontials	0/	0.00	 D1		0.01		0.1		1		10		100	10	000
	Particle	%							Parti	cle Size (n	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
15	57	28	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32568 Depth from (m): 1.10

Hole Number: TP11 Depth to (m):

Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown silty clay gravelly SAND

		CLAY		Tille	SILT	T OOGI S		1110		ND	oourse			RAVE		ar 30	COBBL	ES_			
BS Test	%	1																			
Sieve	Passing)2	90		30	90		8	00		 	_				ا	,			
125	100	1	0.002	0.006		0.030	090.0		0.200	0.600	(2.00	0.9		20	9	000	Š			100
90	100															I				П	100
75	100						Ш									/				Ш	90
63	100						Ш								/					Ш	90
50	100						Ш													Ш	80
37.5	89																				80
28	86																			Ш	70
20	85						Ш													Ш	70
14	81	<u>.</u>																		Ш	60
10	77	sing																		Ш	00
6.3	73	Percentage Passing.					Ш			<u> </u>										Ш	50
5.0	72	age					Ш												Ш	Ш	50
3.35	71	ent					Ш													Ш	40
2.00	68						Ш				Ш		ШШ						Щ	Ш	40
1.18	66	I "∟									Ш		ШШ						Ш	Ш	30
0.60	60		\perp			$\sqcup \sqcup \sqcup$	Ш						Ш						Ш	Ш	00
0.425	55					$\sqcup \sqcup \sqcup$	Ш			Ш	Ш		ШШ						Ш	Ш	20
0.300	49						Ш												Ш	Ш	
0.212	43						Ш					Ш							Ш	Ш	10
0.150 0.063	37 31		1				Ш				11								Ш	Щ	. 0
0.003	JI	' <u> </u>			Щ		Ш				Щ						Щ			Щ	0
Particle	%	0.001			0.01		(0.1			1			10			100			100	0
- di tiolo	l _ ′.									Partic	le Size (mm)									

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
31	37	32	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.00

Hole Number: TP12 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown gravelly sandy silty CLAY

				-	Fine	Mediun	Coarse	Fine	: Me	edium	Coarse	Fine	Mediur	n Coa					
			CLAY			SILT			SA	AND			GRAVE	1	(COBBLES			
						0.2.			<u> </u>				0.0.00						
ı	DC T+	04	1																
	BS Test	% Dessins		2	9		0	 	0	0	ı				I				
	Sieve 125	Passing 100		0.002	0.006		0.030	0.060	0.200	0.600	2.00	0.9		20	99	200			
	90	100		Ť	ППТ	Ш		ПП	Ī	ТŤП							\Box	\Box	100
	75	100		\dashv							┨_┷	_			ш		+++	Ш	
	63	100				Ш											$\pm \pm \pm$	ш	90
	50	100				111									111		+++	Ш	
	37.5	100				111				/					1111		+++	ш	80
	28	100				111									ш		+++	Ш	
	20	100				111									ш		+++	Ш	70
	14	99				111									ш		+++	Ш	
	10	97	ng.												ш		+	Ш	60
	6.3	96	Percentage Passing.			Ш												Ш	
	5.0	95	Je P			Ш												Ш	50
	3.35	94	ntag –			Ш											+	Ш	
	2.00	93	- Lce			111									111		+++	ш	40
	1.18	91	&	\dashv		111							111		ш		+++	Ш	
	0.60	87				111				++++					111		+++	Ш	30
	0.425	83		\dashv									111		ш		$\pm \pm \pm$	Ш	
	0.300	78		\dashv		1111									+		+++	Ш.	20
	0.212	69				HH											$\pm \pm \pm$	Ш	
	0.150	60		\dashv	++++								111		+		+++	Ш	10
	0.063	52		\dashv									Ш		+		+++	$\dagger \parallel$	
			0.001			0.01		0.1			1		10			100		1000	0
	Particle	%	0.001			0.01		0.1		Particle	e Size (n	nm).	10			100		1000	

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
52	41	7	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Date: 26.10.16

В

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 0.95

Hole Number: TP13 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown slightly clayey gravelly silty SAND

			Fine	Mediur	n Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND			GRAVEL		COBBLES		
				OILI			0, 1110			OIUTTE	-			
	_	7												
BS Test	%											ļ		
Sieve	Passing		0.002	0.00	0.030	3	0.200	5	3 0	: 6	8 9	200		
125	100)) 		1111	· -	·	·		$\overline{}$	100
90	100												++++	4
75	100						+++++						++++	90
63	100		$\perp \perp \perp \perp$							\square	$\perp \perp \perp \perp$		+++++	4
50	100										\perp		$\perp \perp \perp \perp$	80
37.5	100							Ш					$\perp \downarrow \downarrow \downarrow \downarrow$	
28	99						$\sqcup I \sqcup \sqcup$	Ш						70
20	99						$\sqcup \sqcup \sqcup$							<u> </u>
14	96						I							60
10	94	ing					I							00
6.3	92	ass					$I \cap I$							T
5.0	91	ge					I							50
3.35	90	rt l												1
2.00	88	Percentage Passing				<i> </i>							++++	40
1.18	87	4								111 1			++++	1
0.60	84							111		111	+		++++	30
0.425	81					111		111		111			++++	Ħ
0.300	77						 	1111 1					++++	20
0.212	50					HH	 	 		 	++++			1
0.150	34							+++					++++	10
0.063	25	 	+++			+++-	++++	++++		+++	+++		++++	+
-	•	·				Щ		1111		1111				4 0
Particle	%	0.001		0.01		0.1	Part	1 icle Size (n	nm)	10		100	1	1000
Diamatan	Doccina	I					· ui ·	0120 (1	,.					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
25	63	12	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Date: 26.10.16

В

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.80

Hole Number: TP14 Depth to (m):

Sample Type: B

Location: Adastral Park, Ipswich

Description: Brown slightly clayey silt gravelly SAND

				Fine	Mediu	m Coarse	Fine	Mo	dium	Coarse	Fine	Medium	Coarse			
		CLAY		Tille	•		TITIC			Coarsc	TITIC			COBBLES		
		OLITT			SILT			SA	ND			GRAVE	L	OODDELEO		
BS Test	%															
Sieve	Passing		0.002	900.0		0.030	0.000	0.200	0.600	2.00	0 9	2	0 0	200		
125	100	_	0			o ,	j	Ö	ŏ	2	, ,		9	· ~		n 100
90	100				Ш		Ш					Ш				
75	100						Ш									90
63	100				Ш		Ш		Ш			Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	1
50	95			$\perp \perp \perp \perp \perp$	Ш		Ш						/		$\perp \perp \perp \perp \perp$	80
37.5	95			$\perp \perp \perp \perp$	Ш		Ш								ШШ] "
28	87															70
20	82				Ш							111				J ′°
14	77															60
10	73	sing														00
6.3	68	Pas														50
5.0	66	age														30
3.35	63	ent?							$ \mathbf{V} $							40
2.00	60	Percentage Passing							7							40
1.18	57								/							30
0.60	45							$\top I$								30
0.425	37							7								20
0.300	26															20
0.212	17						مرا∏					Ш				1
0.150	12				Ш											10
0.063	9				Ш		Ш									1
		0.001			0.01		0.1			1		10		100	1	4 0
Particle	%								Particle	e Size (n	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
9	51	40	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32568 Depth from (m): 1.40

Hole Number: TP15 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown slightly clayey silty gravelly SAND

				Fine	Medium	Coars	е	Fine	Med	lium	Со	arse	Fine	Medium	Coarse				
		CLA'	Y		SILT				SA	ND				GRAVE	L	COE	BBLES		
							-									-			
BS Test	%	1																	
Sieve	Passing		20	96		30	- 09		8	0		0	_			J	0		
125	100		0.002	0.006		0.030	090.0		0.200	0.600		2.00	9	5	20 5	9	200		400
90	100	l					Ш				Ш								100
75	100						Ш			Ш	Ш								90
63	100						Ш				Ш								90
50	100						Ш				Ш								80
37.5	100						Ш				Ш		_						80
28	99						Ш			Ш	W								70
20	97						Ш												/0
14	90	ا ا					Ш				Ш								60
10	86	sing								$/ \parallel$									60
6.3	81	Pas																	50
5.0	80	age																	50
3.35	79	enta																	40
2.00	77	Percentage Passing.							/										40
1.18	74	l <u>°</u> [Ш								30
0.60	67	ΙL					Ш				Ш								30
0.425	60										Ш								20
0.300	49										Ш								20
0.212	35										Ш								10
0.150	25																		10
0.063	18	J [0
Darticlo	%	0.00	01		0.01	<u> </u>	().1			1			10	<u> </u>	100		10	000
Particle	/0									Parti	cle S	ize (m	nm).						

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
18	59	23	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

 Contract Number:
 32568
 Depth from (m):
 1.00

 Hole Number:
 WS06
 Depth to (m):
 1.50

 Sample Type:
 B

Sample Number:

Location: Adastral Park, Ipswich
Description: Brown gravelly silty SAND

				Fine	Λ	/ledium	Coa	rse		Fine	М	edi	um	C	oarse	Fi	ne	M	edium	Co	arse						
		CLA'	Y		,	SILT					S	ΑN	ID					GR	RAVEI			(COBE	BLES	,		
																						4					
BS Test	%	I																									
Sieve	Passing		2	! >	9		30	Ç	3		8		0		0		_					ı		0			
125	100		0.002		0.000		0.030	0,40	5		0.200		0.600		2.00		9	5	Č	70	(9		200			400
90	100	ſ							Ш				П				-	\blacksquare				П	П			Ш	100
75	100				Ш			Ħ	Ш				П	Ш				Ш				П				Ш	1
63	100				Ш			П	Ш				Ħ	1	/		П	Ш				П				Ш	90
50	100	ĺ			Ш			П	Ш				П	7				Ш				П				Ш	80
37.5	100	ĺ			Ш			П	Ш				П	/			П	Ш			Ш	П				Ш	80
28	100								Ш				1/	Ш							П	П				Ш	70
20	100								Ш				7	П								П				Ш	1 ′0
14	100	. [Ш				7									П				Ш	60
10	99	sing																				П				Ш	1 00
6.3	99	Pass																				П				Ш	50
5.0	98	ıge										7										П				Ш	1 50
3.35	97	enta										$/\!\!\!/$										П					40
2.00	95	Percentage Passing			Ш			П					П									Ш				Ш	40
1.18	93	- [П	Ш				П									П				Ш	30
0.60	72																					Ш] 30
0.425	52								Ш													Ш					20
0.300	38								Ш	J												Ш] 20
0.212	31																					Ш					10
0.150	17							-					\prod									Ш				Ш] 10
0.063	8	[Ш] 0
Dontiel-	0/	0.0	01		0.	.01			0	.1				1	1			1	0				100			10	000
Particle	%											P	arti	cle	Size (n	nm).											

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
8	87	5	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Ben Sharp (Contracts Manager)

Contract Number: 32810

Client's Reference: 2338 Report Date: 15-11-2016

Client GEG Limited

17 Graham Road

Malvern

Worcestershire WR14 2HR

Contract Title: Adastral Park, Ipswich

For the attention of: Matthew Perks

Date Received: 22-10-2016
Date Commenced: 22-10-2016
Date Completed: 15-11-2016

Test Description Qty

PSD Wet Sieve method
1377: 1990 Part 2: 9.2 - * UKAS

Disposal of Samples on Project

1

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director)

GEO Site & Testing Services Ltd

Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 0.90

Hole Number: TP01

Depth to (m): Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown slightly gravelly sandy silty CLAY.

				Fine	Medium	Coarse	Fii	ne	Medium	Coarse	Fine	Medium	Coarse			
		CLA	Υ		SILT				SAND			GRAVEL	-	COBBLES		
BS Test	%															
Sieve	Passing		0.002	0.006		0.030	0.060	0.200	0.600	00	3 0	}	09	200		
125	100		Ö	3		, o	<i>:</i>	<u>.</u>		· · ·	1 4	, , , 	9	·		100
90	100				Ш		Ш									-
75	100						Ш									90
63	100						Ш									
50	100						Ш		\perp / \perp							80
37.5	100				Ш		Ш		$\perp /\!\!\!\perp$	Ш						1
28	100				Ш		Ш		$\perp \!\!\! \perp \!\!\! \perp$							70
20	99				Ш		Ш]
14	98	ا ا			Ш		Ш		4111							60
10	98	sing					Ш] "
6.3	97	Pas						_								50
5.0	96	age					Ш] 30
3.35	95	enta														40
2.00	94	Percentage Passing.														1 40
1.18	93	"														30
0.60	87															30
0.425	82															20
0.300	64						Ш									20
0.212	58						Ш									1
0.150	53															10
0.063	50						Ш									1
	1	0.0	01		0.01		0.1	•		1		10		100	10	4 0
Particle	%								Part	icle Size (r	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
50	44	6	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32810-201016 Depth from (m): 1.45

Hole Number: TP1 Depth to (m):

Sample Type: B

Location: Adastral Park, Ipswich

Description: Brown slightly gravelly sandy silty CLAY.

				Fine	Mediur	n Coarse	Fine	Me	edium	Coarse	Fine	Mediur	n Coarse		-	
		CLA	Υ		SILT			SA	AND			GRAVE	EL.	COBBLE	S	
															_	
BS Test	%					_										
Sieve	Passing		0.002	9000		0.030	9	0.200	0.600	9	9	}	50	200		
125	100		C	<u> </u>	ш) 	0	<u>- 0</u>	 		7111		 		100
90	100															H
75	100															90
63	100															H
50	100				Ш											80
37.5	100				Ш					Ш		Ш				4
28	100				Ш					Ш	\perp					70
20	100															4
14	100	ė														60
10	100	sine			Ш							Ш				
6.3	99	Pas			Ш											50
5.0	99	age			Ш					Ш		Ш				
3.35	98	ent														40
2.00	97	Percentage Passing.														<u> </u>
1.18	95	-														30
0.60	88															
0.425	86															20
0.300	85															20
0.212	83															10
0.150	78															10
0.063	74	J] 。
D. P. J. J.	0/	0.0	01		0.01		0.1			1		10		100	1	.000
Particle	%								Partic	le Size (r	nm).					

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
74	23	3	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 1.30

Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse

Hole Number: TP02 Depth to (m):

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown clayey silty very gravelly SAND.

		-	.	rine Me	dium [Coarse	rine	Med	iuiii C	Joanse	riile	Mediuiii	Coarse			
		CLAY		SI	LT		SAN	ND		(GRAVEI	-	COBBLES		
BS Test	%														
Sieve	Passing		0.002	9000	0.030		0.200	0.600	00.	6.0	g	07 09	200		
125	100	_ ا	<u>.</u>	- i	0 0	<u> </u>	0	ö		. •	,	v 9	7		100
90	100											\perp / \perp			
75	100											$-\!\!\!/\!\!\!/\!\!\!\perp$			90
63	100										Ш	$/\!\!\!/\!\!\!/\!\!\!/\!\!\!/\!\!\!/$			
50	100											/			80
37.5	92														
28	89														70
20	80														/0
14	76	<u>.</u> L													60
10	72	Sing													00
6.3	68	Pass													50
5.0	67	ge					1 /								50
3.35	65	enta													40
2.00	64	Percentage Passing.													40
1.18	62														20
0.60	57														30
0.425	54														
0.300	40														20
0.212	33														
0.150	26														10
0.063	22]													
Do Mala	0/	0.001	L L	0.0	1	0.1			1		10		100	100	0 00

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
22	42	36	0	Total Percentage

Particle Size (mm).

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 1.40

Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse

Hole Number: TP16

Depth to (m): Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown gravelly silty clayey SAND.

			CLAY		SILT		AND	GRA	/EL	COBBLES	
	BS Test	%			0					1	
ı	Sieve	Passing		0.002	0.030	0.200	0.600	6.0	20	200	
ı	125	100		0 0		5 0 	, , , , , , , , , , , , , , , , , , , 	<u>, </u>			100
	90	100	I							\square	
ı	75	100	<u> </u>							HH-H-H	90
	63	100	l								
	50	100								\coprod	80
ı	37.5	100									
	28	100									70
	20	96									
	14	93	<u>.</u> L.				/				60
ı	10	90	ging				/				
ı	6.3	88	Pas								
	5.0	86	ge								50
	3.35	85	l la								
	2.00	84	Percentage Passing								40
	1.18	82	•								
ı	0.60	73			<u> </u>						30
	0.425	66									
	0.300	53									20
	0.212	45		 							
	0.150	36						- 			10
	0.063	30	l 	+ + + + + + + + + + + + + + + + + + + +			- 				+++++
•			·			111	111111				0
1	Particle	0/2	0.001	0.	01	0.1	1	10		100	1000

Particle	%					
Diameter	Passing					
0.02	#					
0.006	#					
0.002	#					

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
30	54	16	0	Total Percentage

Particle Size (mm).

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32810-201016 Depth from (m): 2.80

Hole Number: TP17 Depth to (m): Sample Type:

Location: Adastral Park, Ipswich

Description: Brown silty slightly gravelly SAND.

				Fine	Me	dium Coa	rse	Fine	Me	dium	Coarse	Fine	Med	dium Co	arse		_		
		CLA	Y		SI	LT			SA	AND			GRA	VEL		COBBLE	S		
																	_		
BS Test	%	1																	
Sieve	Passing		0.002	900	3	0.030	090.0		0.200	0.600	5		?	20	_	200			
125	100	Ι.	0.0		3	0.0	0.0		0	9.0	,	i '	ó	2	9	7			100
90	100												ملال						100
75	100																		90
63	100						Ш												
50	100							Ш		Ш	$\parallel f \parallel$								80
37.5	100							Ш			I								
28	100							Ш											70
20	100										(, ,
14	99						Ш			$\perp \!\!\! \perp \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$									60
10	97	Passing.					Ш			$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$									
6.3	94	Pas								$\perp I \parallel$									50
5.0	94	age																	30
3.35	93	Percentage																	40
2.00	90	Perc								/									10
1.18	84	"								/									30
0.60	58																		30
0.425	43																		20
0.300	28																		20
0.212	21																		10
0.150	11																		10
0.063	5	J																	0
	1	0.0	01		0.01			0.1			1		10			100		100	-

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
5	85	10	0	Total Percentage

Particle Size (mm).

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

Date: 15.11.16

В

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 1.85

Hole Number: TP18 Depth to (m):

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown silty slightly gravelly SAND.

				Fine	Med	lium Coar	se	Fine	Me	edium	Coars	se	Fine	М	edium	Coar			_		
		CLA	Y		SIL	. T			SA	AND				GF	RAVEL	_		COBBLE	S		
																			_		
BS Test	%	1																			
Sieve	Passing		0.002	900 0		0.030	090.0		0.200	0.600		2.00		0.0	ć	>	0	200			
125	100	1.	0.0			0.0	<u>.</u>		0	0.6		2.	<u>, , , , , , , , , , , , , , , , , , , </u>	٥		V .	9	7			100
90	100																			Ш	100
75	100						Ш				Ш			Ш		<u> </u>	Ш			ШШ	90
63	100				Ш					Ш	Ш						Ш			ШШ	30
50	100				Ш					Ш	Ш						Ш			ШШ	80
37.5	97				Ш		Ш			Ш				Ш			Ш			ШШ	00
28	97										Y			Ш							70
20	91																				70
14	90	<u>.</u> ا																			60
10	86	sing																			00
6.3	84	Pas								$/\!\!\perp\!\!\!\perp$											50
5.0	82	age								$\prime \sqcup \sqcup$											30
3.35	80	Percentage Passing.																			40
2.00	78	erc																			70
1.18	75	-																			30
0.60	63																				30
0.425	56																				20
0.300	46																				20
0.212	37																				10
0.150	27																				10
0.063	22	.																			0
	1 -	0.0	01		0.01			0.1			1			1	0			100		10	00

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
22	56	22	0	Total Percentage

Particle Size (mm).

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 0.90

Hole Number: TP20 Depth to (m):

Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown slightly gravelly silty SAND.

				Fine	Mediur	n Coarse	Fir	ne M	edium	Coarse	Fine	Mediur	n Coars				
		CLA	Υ		SILT			S	AND			GRAVE	EL	C	COBBLES		
BS Test	%																
Sieve	Passing		0.002	900.0		0.030	0.000	0.200	0.600	9		!	20	09	200		
125	100	١.,	0	9		0 0	5	o.	, ŏ				7	9	Ñ		100
90	100													Ш			
75	100											Ш		Ш			90
63	100											Ш		Ш			1
50	100								$\perp \! \! \perp \! \! \! /$			Ш		Ш			80
37.5	100				Ш		Ш		\perp / \perp			Ш		Ш			
28	100						Ш		$I \sqcup I$			Ш		Ш			70
20	100													Ш] / °
14	99								$\prime \bot \bot \bot$			Ш					60
10	98	sing										Ш		Ш			
6.3	97	Pas										Ш					50
5.0	97	age															30
3.35	96	Percentage Passing.															40
2.00	95	erc						ノ									40
1.18	93	"															30
0.60	82] 30
0.425	74																20
0.300	58											Ш		Ш			20
0.212	49													\prod			1 10
0.150	37											Ш		\parallel			10
0.063	32]										Ш		\parallel			
Particle	0/2	0.0	001		0.01		0.1			1		10			100	1	000

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
32	63	5	0	Total Percentage

Particle Size (mm).

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458 Sample Number:

Contract Number: 32810-201016 Depth from (m): 2.00

Hole Number: TP23 Depth to (m):

Sample Type: B

Location: Adastral Park, Ipswich

Description: Brown slightly gravelly slightly clayey silty SAND.

		<u> </u>		Fine	Mediu	um Coarse	Fin	e Me	edium	Coarse	Fine	Mediun	n Coarse				
		CLA	ΑY		SILT	Γ		SA	AND			GRAVE	L	COBE	SLES		
_	Γ	-															
BS Test	%			ļ.,		0		0	_								
Sieve	Passing		5	0.002		0.030		0.200	0.600	00.	0.9		20	3	200		
125	100						, 	$\overline{}$									100
90	100		-		Ш		Ш	+					/	+++-			1
75 63	100				+++		Ш		++++					+++-			90
63	100				+++-									+++-			-
50	100				+++-	- 	Ш	+						+++-	+		80
37.5 28	100 100				+++				/ 								-
20	94				+++				/								70
20 14	92				+++			+)	' 								1
10	90	ē			+++-												60
6.3	89	assi			+++-				+++++								-
5.0	88	e P			+++-				++++								- 50
3.35	87	ıtag			+++-												1
2.00	87	Percentage Passing.															40
1.18	86	Pe															
0.60	82				Ш		Ш										30
0.425	79				+++-		Ш		+++++					+++-			1
0.300	64				+++-		Ш										20
0.212	59				+++-				+++++			+++-					1
0.150	52				+++-	 	+		++++			+++		+++-			10
0.063	48				+++-		+		++++			+++-		+			1
		_ 	001		0.01		0.1			1		10		100		1	↓ 0
Particle	%	0.	001		0.01		0.1		Particl	e Size (n	nm).	10		100		1	000

Particle	%					
Diameter	Passing					
0.02	#					
0.006	#					
0.002	#					

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
48	39	13	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

DPRIORS

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 1.00

Hole Number: TP24

Depth to (m): Sample Type: B

Sample Number:

Location: Adastral Park, Ipswich

Description: Brown silty very sandy GRAVEL.

				Fine	Mediu	ım Coars	e Fin	e M	edium	Coarse	Fine	Mediun	Coarse			
CLAY		SILT				SAND		GRAVEL		COBBLES						
BS Test	%						1	_								
Sieve	Passing		0.00	2000		0.030	0.060	0.200	0.600	0	3 0	2	20 20	200		
125	100	1		<u> </u>	<u> </u>	- 0	<u>о</u>	0	<u> </u>	 	<u> </u>		··			100
90	100															-
75	100								+				+H			90
63	100			-	Ш				+							_
50	100								+							80
37.5	88								+				/////			-
28	80			$-\!\!+\!\!+\!\!+\!\!+\!\!+$									/			70
20	68				1111				$\perp \! \! \perp \! \! \perp \! \! \perp \! \! \perp$							1
14	66	٠														60
10	64	sing		$\perp \perp \perp \parallel$	Ш] ``
6.3	62	Pas			Ш							Ш				50
5.0	60	age			Ш				$\int \sqcup \int$							
3.35	59	ent							$/\!\!\perp\!\!\perp\!\!\!\perp$							40
2.00	58	Percentage Passing.							$/\!\!\perp\!\!\perp\!\!\perp\!\!\perp$] '`
1.18	57															30
0.60	52] ~~
0.425	49															20
0.300	35															20
0.212	30															10
0.150	25															10
0.063	23	J														
D. P. I	0/	0.0	01		0.01		0.1			1		10		100	10	000
Particle	%								Partio	le Size (r	nm).					

Particle	%				
Diameter	Passing				
0.02	#				
0.006	#				
0.002	#				

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
23	35	42	0	Total Percentage

Remarks:

#- not determined

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Paul Evans (Quality/Technical Manager)

Particle Size Distribution Test BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

Client ref: GEG-16-458

Contract Number: 32810-201016 Depth from (m): 0.95

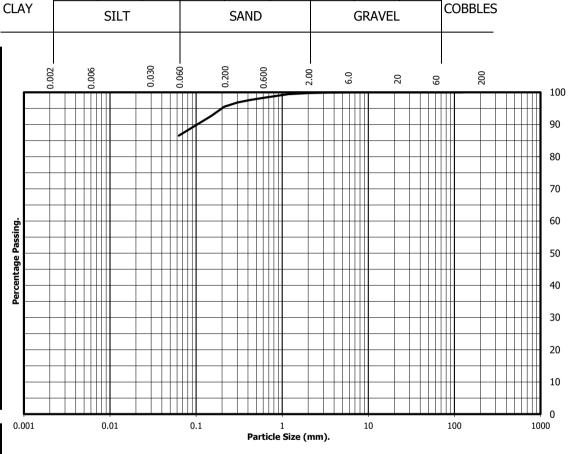
Medium Coarse

Fine

Hole Number: TP25 Depth to (m):

Fine

Sample Type: B


Sample Number:

Medium Coarse

Location: Adastral Park, Ipswich
Description: Brown sandy silty CLAY.

Medium Coarse

BS Test	%
Sieve	Passing
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	100
14	100
10	100
6.3	100
5.0	100
3.35	100
2.00	100
1.18	99
0.60	98
0.425	98
0.300	97
0.212	96
0.150	93
0.063	87

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
87	13	0	0	Total Percentage

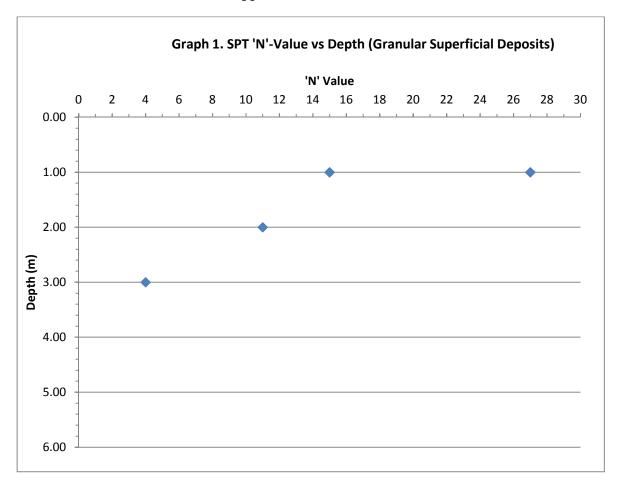
Remarks:

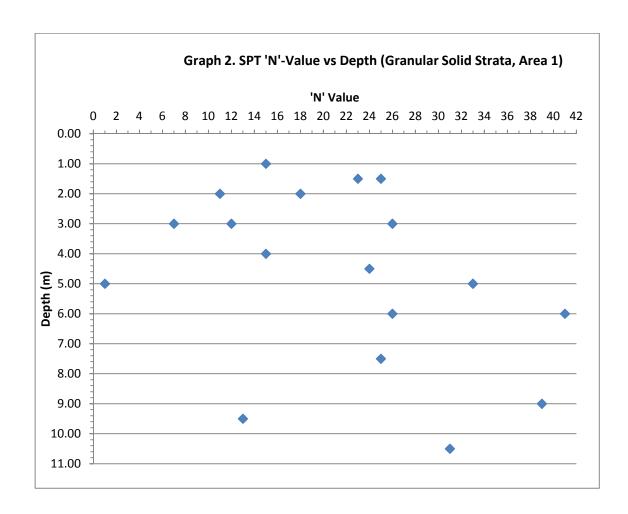
#- not determined

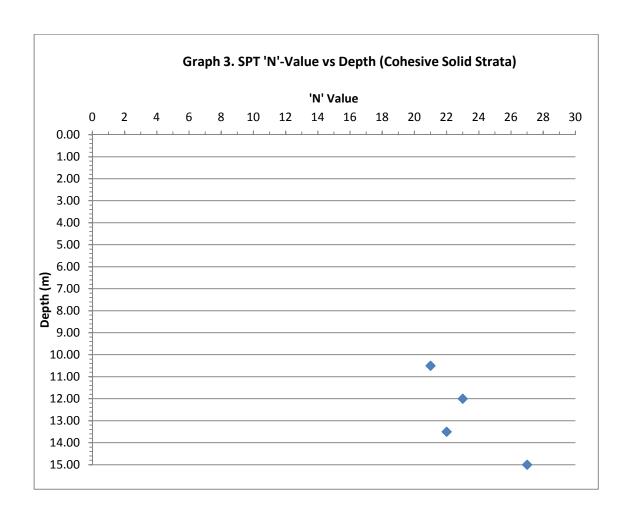
For and behalf of GEO Site & Testing Services Ltd

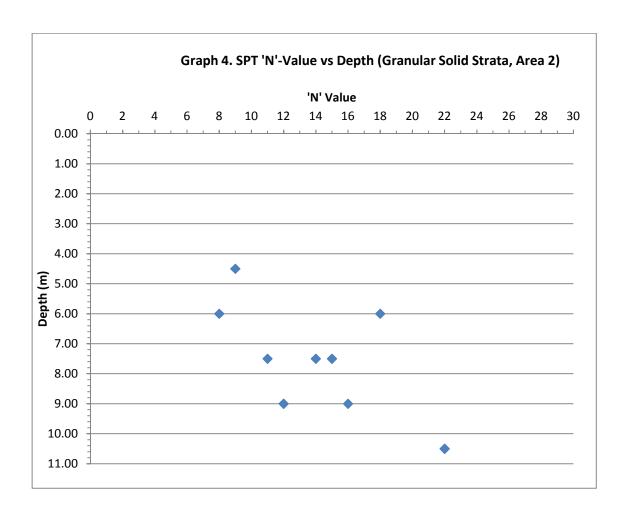
Authorised By:

Paul Evans (Quality/Technical Manager)






APPENDIX I


GEOTECHNICAL GRAPHS

Appendix I

