PROPOSED RESIDENTIAL DEVELOPMENT

AT

LAND NORTH OF HUMBER DOUCY LANE,

IPSWICH

FOR

WO & PO JOLLY HOLDINGS LTD

FINAL GEOTECHNICAL AND GEOENVIRONMENTAL INTERPRETATIVE REPORT REPORT NUMBER 16118SI

NOVEMBER 2022

DOCUMENT CONTROL PAGE

Report details		
Report type	Final Geotechnical and Geoenvironmental Interpretative Report	
Project number	16118SI	
Site address	Land North of Humber Doucy Lane, Ipswich	
Client details	WO & PO Jolly Holdings Ltd	
Date of issue	8 November 2022	

Version control			
Version	Version Date Author Changes/Comments		Changes/Comments
number			
1	30/09/22	GJB	Interim Report, Prior to Completion of LCP Boreholes and Gas Monitoring
2	08/11/22	GJB	Final Report

Engineer contact details	
Report prepared by	
Joanna Chapman BSc, MSci	
Senior Geoenvironmental Engineer	
Gavin Bell, BSc, MSc, CGeol FGS	
Principal Engineer	
Report checked by	
Phil Gawne, BSc, MSc, DIC, FGS	
Technical Director	

Use and reliance

This report has been prepared for the sole internal use and reliance of WO & PO Jolly Holdings Ltd. This report shall not be relied upon by other parties without the express written authority of RSA Geotechnics Ltd. If an unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors owe them no duty of care and skill.

Authorisation

Authorisation for the investigation was given by Trevor Sparkes of Trevor Sparkes Consulting Limited, acting on behalf of the Client, WO & PO Jolly Holdings Ltd in an email dated 29/06/22.

Limitations

This report considers the proposals for the subject site at the time of issue of the report. Should the scheme change significantly then the implications regarding the geotechnical and geoenvironmental aspects will need consideration relative to the new proposals. This report is based on the results of the fieldwork and laboratory testing carried out and on an examination of the recovered samples. The possibility that different conditions may exist other than at the exploratory hole positions, or at greater depth, should not be ruled out. In particular, groundwater records apply only to the time and place of investigation, since wide variations may occur through seasonal or other causes. Advice and recommendations have been based on the findings of the investigation. It must be appreciated that not finding indicators does not mean that hazardous substances do not exist on the site. The site investigation only permits a small proportion of the site to be inspected.

RSA Geotechnics Limited have based this report on the results of the desk study and recent intrusive investigation and the testing carried out, as well as the other sources detailed within the report, which are believed to be reliable. However, RSA Geotechnics Limited cannot and does not guarantee the authenticity or reliability of the third-party information that it has relied upon.

CONTENTS

		Page No.
DOCU	MENT CONTROL PAGE	1
CONTE	NTS	2
EXECU [°]	TIVE SUMMARY	5
1.	INTRODUCTION	7
2.	SITE SETTING	8
2.1	Site location	8
2.2	Site description	8
3.	DESK STUDY	13
3.1	Sources of information	13
3.2	Historical land use	13
3.3	Unexploded ordnance	15
3.4	Public Register data	15
3.5	Environmental site reconnaissance visit	21
3.6	Summary of desk study	22
3.7	Outline conceptual model	23
3.7.1	Introduction	23
3.7.2	Potential sources, pathways and receptors	24
3.7.3	Potential pollutant linkages	25
4.	GROUND INVESTIGATION	28
4.1	Fieldwork	28
4.2	Laboratory testing	29
5.	GROUND CONDITIONS	31
5.1	British Geological Survey Data	31
5.1.1	BGS Borehole Data	32
5.2	Summary of ground investigation data	33
5.2.1	Topsoil/Subsoil and Possible Made Ground	33
5.2.2	Lowestoft Formation	34
5.2.2.1	Cohesive Glacial Till (Diamicton)	34
5.2.2.2	Granular Glacial Sand and Gravel	34
5.2.3	Groundwater	35
5.2.4	Visual or olfactory evidence of contamination	35
6.	GEOTECHNICAL CONSIDERATIONS	36
6.1	The proposed scheme	36
6.2	Structural foundations	36
6.2.1	Shallow Foundations	36
6.2.1.1	Desiccation and Heave	37
6.2.1.2	Bearing Pressures	38
6.2.2	Piled foundations	39
6.3	Ground floors and anti-heave precautions	39
6.4	Access roads and areas of hardstanding	40
6.5	Groundworks	40
6.6	Soakaway drainage	41
7.	GEOENVIRONMENTAL CONSIDERATIONS	43

CONTENTS CONTINUED

	<u>Page No.</u>
7.1 Introduction	43
7.2 Published guidelines	43
7.3 Generic qualitative risk assessment by receptor	r 43
7.3.1 End users	43
7.3.1.1 Inorganic contaminants	43
7.3.1.2 Organic contaminants	44
7.3.1.3 Asbestos	44
7.3.1.4 Ground gas	45
7.3.1.5 Conclusion of end user risk assessment	46
7.3.2 Groundworkers	47
7.3.3 Controlled Waters	47
7.3.4 Off-site human and property receptors	48
7.3.5 Building materials	48
7.3.5.1 Below ground concrete	48
7.3.5.2 Potable water pipes	49
7.3.6 Vegetation	49
7.4 Refined conceptual model	50
7.4.1 Introduction	50
7.4.2 Plausible relevant pollutant linkages	50
7.5 Recommended remediation strategy	50
7.5.1 Contaminated land	51
7.5.2 Groundworkers and off-site receptors	51
7.5.3 Ground gas	52
7.5.4 Watching brief and discovery	52
7.6 Waste disposal	53
8. CONCLUSIONS	55

FACTUAL DATA

Instrumentation details
List of symbols
Borehole logs
Window sample hole logs
Trial pit logs
Dynamic cone penetrometer (DCP) results
Soakaway test results
Gas and groundwater monitoring record sheets
Laboratory test reports
Headspace monitoring record sheets

Chemical contamination analyses results

DRAWINGS

	<u>Drawing No.</u>
Draft Development Masterplan	16118SI/1
Exploratory hole location plan	16118SI/2
Plot of uncorrected penetration resistance N-value against depth	16118SI/3
Plot of undrained shear strength against depth	16118SI/4

APPENDICES

Appendix 1: Appendix 2:	Fieldwork methodology Risk assessment methodology and legislative background; Risk classification system; Published guidelines
Appendix 3:	Screening values for 'residential' development.
Appendix 4:	Landmark Envirocheck data search report.
Appendix 5:	Landmark Ordnance Survey map extracts.
Appendix 6:	Mining and Ground Stability Datasheet
Appendix 7:	Third party report - Historic Land Drainage Plans & Historic Water Main Plans
Appendix 8:	Location Surveys – Desktop Utilities Survey Report.
Appendix 9:	Zetica Bomb Map – North Ipswich

EXECUTIVE SUMMARY

Desk Study		
Proposed development	The proposed scheme comprises of the construction of a low-rise residential development, with associated roads, parking, private gardens and landscaping.	
Site location and description	The site was located to the north of Humber Doucy Lane Rushmere, located approximately 3.5 km north west of Ipswitown centre. The site can be approximately located using National Grant Reference TM 186 467.	
Current and historic site use	Historically the site has been occupied by open land parcels used for agriculture and has included ponds within the eastern part of the site and land drains in the south and along the site boundaries Various ponds, some associated with land drains have been located around the periphery of the site.	
Geology and hydrogeology	The geological maps for the area indicate the site is covered by a layer of superficial deposits comprising the Lowestoft Formation (Glacial Till) underlain by Glacial Sands and Gravels, both of the Anglian Glaciogenic Group, underlain by sands and gravels of the Kesgrave Catchment Subgroup – Dunwich Formation and the Rec Crag Formation – Crag Group.	
	Lowestoft Formation - Secondary Aquifer (undifferentiated). Red Crag Formation - Principal Aquifer.	
Potential sources of contamination/ key geotechnical issues	Back filled ponds and land drains on site, around the periphery of the site and close to the site boundary. These features have been backfilled with unknown materials that could contain contaminants of concern and could contain degradable materials that could contribute to the production of ground gases.	
	Land uses outside of the site boundary have included a yard adjacent to the north-east and a refuse tip and pet cemetery to the north-west.	
	Fly-tipped garden and household waste on Allen's House access track.	
	Heave and desiccation of cohesive till deposits, from seasonal desiccation due to crops, and in vicinity of mature trees and hedgerows surrounding the sites.	

Site Investigation Fieldwork	The fieldwork comprised the drilling of three cable percussion
rieldwork	boreholes (to target depths of 15 m), ten window sample holes twenty-four trial pits (including six soakaway test pits) and twenty dynamic cone penetrometer (DCP) tests.
	The fieldwork was carried out between 10 August 2022 and 27 September 2022, with six subsequent monitoring visits for ground gas and ground water levels being undertaken between 30 September and 28 October 2022.
Ground conditions	Topsoil/Made Ground Lowestoft Formation
Geotechnical recommendation	Spread foundations extending to a minimum depth of 1.5 m and locally deepened to fully penetrate desiccated 'crust' and glacial clay within the range of influence of existing, felled and proposed trees. Fully suspended floors and full anti-heave precautions are recommended in all the dwellings. Flexible pavement construction. Deep soakaways discharging into the sands and gravels below the cover of clay.
Identified contaminants	None
Geoenvironmental recommendations	No remediation is required to protect the identified receptors. The assessment of the soils against Tier 1 screening values for a 'residential with homegrown produce' end use has not identified any exceedances based on the level of testing completed to date. A potential risk for asbestos to be present within the soils has been identified and it is recommended that a watching brief be carried out during the ground development work for any potential ACM

1. INTRODUCTION

Consideration is being given by WO & PO Jolly Holdings Ltd to the development of land to the north of Humber Doucy Lane, Ipswich. The proposed scheme comprises the construction of an extensive low-rise residential development with associated access roads, parking, private gardens and communal landscaping.

The layout of the proposed development considered in this report is illustrated on the current Draft Masterplan in drawing number 16118SI/1. It should be noted that the proposed sport pitches to the north of the residential development area and the land to the southwest of Humber Doucy Lane shown on the masterplan do not form part of the land parcel under assessment by this report and fall outside the agreed area for this scope of works.

This interpretative report describes a combined phase 1 desk study and preliminary phase 2 intrusive investigation to the directions of Mr Trevor Sparkes of Trevor Sparkes Consulting Ltd, the Consulting Engineer, acting on behalf of the Client, WO & PO Jolly Holdings Ltd. Instruction to proceed with the works was provided in an email dated 29 June 2022.

The scope of the works was as requested by Trevor Sparkes in his original email dated 24 May 2022 and outlined in RSA Geotechnics Limited quotation AJS/QUO/8173 dated 25 May 2022, and comprised the following:-

- Undertake desk study research based on historical and environmental data provided by Envirocheck and a reconnaissance survey of the site.
- Construct three cable percussion boreholes to target depths of 15 m, carry out a series
 of twenty-five targeted window sample holes to 4m and twenty dynamic cone
 penetrometer tests.
- Carry out six BRE 365 trial pit soakage test in accordance with BS 6297: 2007 to provide soil infiltration rates for drainage design.
- Install five wells to monitor groundwater levels (where groundwater is present) and to assess the risks from potentially hazardous ground gases and vapours.
- Carry out geoenvironmental chemical analysis to measure the concentration of a range of commonly occurring potential contaminants.
- Prepare an interpretive report regarding both geotechnical and geoenvironmental factors that may influence the development plans.

The purposes of the investigation were to determine ground conditions beneath the site and to provide initial geotechnical and geoenvironmental recommendations for use in the design of the project.

Due to fieldwork programming, some of the window sample borehole locations were replaced with machine excavated trial pits.

2. SITE SETTING

2.1 Site location

The site was located to the north of Humber Doucy Lane in Rushmere, located approximately 3.5 km north west of Ipswich town centre and can be approximately located using National Grid Reference TM 186 467. The site location is illustrated on drawing number 16118SI/1 and the extent is shown on the image on the front page of the report.

2.2 Site description

A reconnaissance visit was undertaken on 15 July 2022 by an engineer from RSA Geotechnics Ltd.

At the time of the site visit, both the main site, comprising a large arable field and a smaller triangular arable field immediately north, and the smaller secondary site, situated to the southeast, comprising in part a small arable field and part of one of the grass pitches to Ipswich Rugby Football Club (RFC), were cropped with barley.

Figure 1 - Main Field, North of Humber Doucy Lane - View NW

Figure 2 – Triangular Field to North of Lacey's Farm Access Track – View West

The main field (Figure 1) and triangular field (Figure 2) were bounded by a railway line in the north, Tuddenham Road to the northwest, and the grounds of Allen's House, Lacey's Farm, Tower House, part of Tuddenham Lane and the grounds of Ipswich Rugby Football Club to the east. Humber Doucy Lane and the grounds of Tuddenham Road Business Centre, Westerfield House,

Figure 3 – Small Field West of Seven Cottages Lane – View E

Westerfield House Farm and Westerfield House Cottage were to the southwest.

Immediately south of Ipswich Rugby Club, north of Humber Doucy Lane and west of Seven Cottages Lane, was the smaller secondary site, comprising an arable field (Figure 3) and part of a rugby pitch (Figure 4). The western section of the rugby pitch between the smaller site, eastwards to the access track to the rugby club, and

bordering the main field to the west, was outside of the development boundary.

Two other land parcels forming part of the masterplan, located to the north of the railway line, and southwest of Humber Doucy Lane and Westerfield House, were outside the scope of this investigation.

Figure 4 - Small Field and Rugby Pitch, SE Corner of Development - View E

Figure 5 – Railway Line to North of Main Site

The northern boundary to the site, immediately north of the main small triangular field, was formed by an eastwest trending railway line, running in a 4 to 5 m deep cutting (Figure 5) and crossed by two bridges in the vicinity of the site, Tuddenham Road to the west and Lacey's Farm to the northeast.

Figure 6 – Allen's House/Lacey's Farm Access Track - View West

Immediately south of the triangular field was an access track to Allen's House/Lacey's Farm, (Figure 6) trending eastwards from an entrance on Tuddenham Road by Tuddenham Road Business Centre. The lane turned south toward Allen's House in the northeast corner of the site. Partway along the access track in a verge/layby area was a pile of fly-tipped garden and household waste (Figure 7).

The largest field was bounded to the west by the grounds of Tuddenham Road Business Centre (Figure 8), Westerfield House Farm (Figure 9), Westerfield House Care Home (Figure 10) and Westerfield House Cottage (Figure 11). All these properties were accessed off either Tuddenham Road to the west or Humber Doucy Lane to the southwest and south (Figure 12).

Figure 7 – Fly-tipping on Access Track

Figure 8 – Tuddenham Road Business Centre

Figure 9 – Westerfield House Farm

Figure 10 – Westerfield House (Care Home)

Figure 12 – Humber Doucy Lane

The eastern boundary to the main field comprised the access track and grounds of Allen's House (Figure 13), Lacey's Farm, Tower House and the existing and derelict water towers (Figure 14); part of Tuddenham Lane opposite Millbank House (Figure 15); and the grounds and main floodlit pitches of Ipswich Rugby Football Club, accessed via Humber Doucy Lane. (Figure 16).

Figure 13 - Track to Allen's House

Figure 14 – Water Towers, NE Boundary of Site

Figure 15 – Tuddenham Lane/Millbank House

Figure 16 – Entrance to Ipswich RFC

A pedestrian footpath ran along the tree lined eastern boundary of the main field (Figure 17), within the grounds of the rugby club, via the club's entrance track and linking Humber Doucy Lane to Tuddenham Lane.

A second footpath crossed the smaller southeastern site (Figure 18), crossing from Humber Doucy Lane opposite Kinross Road and running up the eastern boundary to the rugby club to Tuddenham Lane, adjacent to Villa Cottage.

Figure 17 – Footpath running up eastern boundary to main field/western edge of grounds to Ipswich Rugby Football Club.

Figure 18 – Footpath crossing Rugby Pitch

Figure 19 – Seven Cottages Lane

The smaller second site, to the southeast of the main site, was bounded to the north by a mature tree lined hedgerow, backing onto the pavilion and car park of Ipswich RFC. To the south it was bounded by a mature hedgerow bordering Humber Doucy Lane and to the east by mature trees and hedgerows along Seven Cottages Lane (Figure 19).

DESK STUDY

3.1 Sources of information

Historical Ordnance Survey maps and data from a search of Public Registers were obtained from the Landmark Information Group Limited using their Envirocheck product (reference number 298514201_1_1). This included information from organisations such as the Environment Agency, Local Authority, British Geological Survey, Natural England and others. The maps included a range of historic and modern Ordnance Survey maps sourced at a range of scales.

It should be noted that the following text does not generally consider features beyond a search radius of 250 m, since based on their distance from the site, a risk from these features was not generally identified. However, for further details outside this 250 m radius a full list is given in Appendix 4.

3.2 Historical land use

The historical land use of the site and immediate surrounding area has been assessed by reference to the Ordnance Survey maps in the Envirocheck Report, as detailed in Table 3.2.

Date	On site	Surrounding area
1881-1882	The site is split into numerous land parcels used as agricultural land.	The surrounding land comprises open agricultural fields, footpaths and occasional houses.
	Two footpaths were located within the southeastern quarter of the site and a third ran across the northern part of the site. A road traversed the northern section of the site from the north-east to the west.	Some larger houses including Rushmere Villa and Westerfield House were located 250m to the east of the site and adjacent to the north western site boundary respectively. A potential Clay Pit was located 110m to the north-east of the site and a railway line ran adjacent to the northern site boundary.
1904	No significant changes.	Allotment Gardens were located 150m east of the site. Allen's Farm was located adjacent to the north-eastern site boundary. Two wells were located approx. 20m from the north-eastern site boundary. A small Pond was located adjacent to the eastern site boundary (due south of the Clay Pit).

Table 3.2 – Historical land use				
Date	On site	Surrounding area		
1927	No significant changes.	A feature thought to represent a pond was located adjacent to the north-western site boundary (due east of Westerfield House) and two residential houses had been developed adjacent to the western site boundary. The buildings to the north-east located near the former Clay Pit are illustrated as Lacy's Farm.		
		A Water Tower is present on the north-eastern site boundary.		
1951	Land drains are located within the south-western and south-eastern parts of the site.	A residential housing estate had been developed along the south-western boundary of the site.		
	Two Ponds were located within the eastern area of the site.	A Pond and off-site land drain were also located approx. 10m from the site boundary at the northern end of the residential estate. An Electricity Substation within the housing estate was located approx. 50m south of the site boundary.		
		Another Pond and off-site land drain were located adjacent to the south-western most part of the site with a second larger Pond located approx. 90m to the south at Rushmere Hall.		
		A Playing Field was adjacent to the western site boundary near Westerfield House and a second water tower and a yard were adjacent to the north eastern site boundary.		
1952-1967	No significant changes.	A Refuse Tip was located approximately 75m to the west of the northern part of the site.		
		The former Clay Pit was now a pond and numerous other ponds were located in the vicinity of Lacy's Farm (between 60 and 100m to the north-east).		

Date	On site	Surrounding area
1970-1972	No significant changes.	Playing fields and Tennis Courts had been developed within the residential estate to the south-west. A Pavilion and Sports Ground had been developed just north of the south-eastern quarter of the site. Whykes Farm was located approximately 100m to the east of the site. The Yard associated with the Water Towers, adjacent to the north-eastern site boundary was annotated as Ipswich Corporation Yard.
1994	No significant changes.	Pound Meadow was located approximately 100m to the south-east of the site. One of the water towers along the eastern site boundary had been decommissioned.
1999	No significant changes.	No significant changes.
2000-2021	No significant changes.	Millennium Cemetery was located 240m to the west of the site.

3.3 Unexploded ordnance

Reference was made to the Zetica bomb map database (https://www.zetica.com to carry out an initial risk assessment for unexploded ordnance in the general area of the proposed development.

The development area is located within a Low Risk area, but is close to a Moderate risk area (due south west) associated with Ipswich Town. Unexploded ordnance has been identified within a 5 km radius of the site, with one find being located approximately 3.6km to the south-west on Civic Drive in Ipswich and a second located 3.5km to the east in Kesgrave off Main Road (A1214).

The risk from UXO for the site and local area is illustrated on the Zetica bomb map included in Appendix 9

3.4 Public Register data

Public Register data and other information was received as part of the Envirocheck Report. This included information from the Environment Agency, Local Authority, British Geological Survey, Natural England and several other sources. A full list of the data obtained can be found in Appendix 4 of this report. It should be noted that the positions of symbols on the environment map supplied are not always very accurate and that judgement should be used in locating each item. It should also be noted that the following summary is generally

restricted to a search radius of 250 m on the basis that beyond this distance a low to negligible risk is identified. The environmental information is summarised in Table 3.4.

Subject	On site	Within 250 m	Details/Remarks
Discharge Consents	1	4	The on-site recorded consent is operated by The Kesgrave Trading Company a Tuddenham Road Business centre and relates to the discharge of Final/Treated effluent into a tributary of the River Fynn The consent appears to still be in operation. A review of the maps indicate the location is off site approximately 10nd to the west of the northern area of the site. Three of the four consents located within a 250m radius are all associated with the discharge of Final/Treated effluent a domestic properties into a tributary of the River Fynn.
			The Discharge Consent located approx 65m to the north was for agricultural and surface water discharge (Trade Discharge into groundwater.
Pollution Incidents to Controlled Waters	0	0	The two incidents recorded beyond 250m radius were associated with the accidental leakage/spillage of organichemicals approx. 690m away to the south on a road. The incident severity for both entries was recorded as Category 3. Minor.
Waste			
Subject	On site	Within 250 m	Details/Remarks
Historical Landfill Sites	0	1	An historical landfill was recorded approx. 30m to the north-west of the site on Tuddenham Road. No further information was supplied. This entry is possibly associated with the Refuse Tip identified in this area on the 1952-1967 OS map.

Waste							
Subject	On site	Within 250 m	Details/Remarks				
Local Authority Recorded Landfill Sites	0	1	A Local Authority Recorded Landfill record exists for the same area as the historical landfill site referenced above, but provides little further information, other than to state a closure date of pre-1974.				
Registered landfill site	0	0	The closest registered landfill site was located approx. 680m to the west and was operated by Cubbits Ltd at Church Lane, Westerfield for the acceptance of construction and demolition waste. The license for the site was recorded as lapsed/cancelled/defunct/not applicable/surrendered.				
Potentially Infilled Land (Water)	0	0	An area of potentially infilled land (pond, marsh, river, stream, dock) was located approx. 640m to the west of the site and a second was located 680m to the east of the site.				
Potentially Infilled Land (Non-Water)	0	0	Unknown filled ground (pit, quarry) located approx. 590m to the west.				
Hazardous subst	ances						
No information r	elating to t	he site or surroun	ding area was recorded under this section.				
Geological			7.00				
Subject	Details/R	emarks					
BGS 1:50,000 Sheet 207 'lpswich'		Site indicated to be underlain by Lowestoft Formation underlain by Red Crag.					
BGS Online	Site indic	ated to be underla	ain by Red Crag (bedrock) described as a				
Geology Viewer	coarse grained, poorly sorted, cross bedded, abundantly shelly sand. Superficial Deposits were identified as Lowestoft Formation (Glacial Till) a chalky till containing outwash sands and gravels, silts and clays.						
BGS Boreholes*	There we borehole the site a (Lowesto Crag reco A second which wa with the	이 그들이 가장 보다 있다. 이 경에는 이 전에 모든 사람들이 되었다. 이 전에 가장 하지 않는 데 보지 않는데 하지 않는데 이 점에 들어 있었다. 그렇게 되었다. 그 모든 그를 다 되었다.					

Geological								
Subject	Details/Re	marks						
BGS Recorded	Allen's Farm Pit was recorded 125m to the north-east of the site and							
Mineral Sites*	was recorded as an opencast sand and gravel mine. The status of the mine was recorded as Ceased.							
Coal Mining	The site was located within an area that might not be affected by Coal							
Affected Areas	Mining.							
Mining		s recorded unde	er these headings within a 1km radius of the					
instability	site.							
Man-Made	122							
Mining Cavities								
Natural Cavities								
Non-Coal	Rare to Un	ikely risk						
Mining Areas of	2000 0 00 000							
Great Britain*								
Ground stability	hazard pote	ntial*						
Subject	On site	Within 250 m	Details/Remarks					
Collapsible	Very Low	n/a	n/a					
Ground		.,,-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Compressible	No	n/a	n/a					
Ground	Hazard	.,, =	","					
Ground	No	n/a	n/a					
Dissolution	Hazard		.,, -					
	12772							
Landslide	Low to	Low	n/a					
401104104	Very Low		777					
Running Sand	Very Low	n/a	n/a					
Shrinking or	Low to	n/a	n/a					
Swelling Clay	No							
9.337	Hazard							
BGS Urban Soil C		erages						
Subject	Details/Re							
Arsenic	13 mg/kg							
Cadmium	<1 mg/kg							
Chromium	39 mg/kg							
Lead	119 mg/kg							
Nickel	15 mg/kg							
Radon Potential		% of homes esti	mated to be at or above Action Level					
– Radon	Less than 1	.70 Of Homes esti	mated to be at or above Action Level					
Affected Areas								
(NGIS*)								
(IAOIS)								

BGS Urban Soil C	hemistry A	verages						
Subject	Details/Remarks							
Radon Potential — Radon Protection Measures (NGIS*)	No radon protection measures considered necessary (BGS)							
Hydrogeological,	hydrologic	al flooding						
Subject	On site	Within 250 m	Details/Remarks					
Water Abstractions (Groundwater/ Surface Water)	0	0	The nearest groundwater abstraction was located approx. 715m to the east and was associated with a public potable water supply operated by Anglian Water.					
Source Protection Zones	1	1	The site is located within Zone III (Total catchment) of a Source Protection Zone. Zone II (Outer protection Zone) is located approx. 170 to the north-east of the site and Zone I (Inner Protection Zone) is located approx. 340m to the north-east.					
Extreme Flooding or Flooding from Rivers or Sea without Defences	No	No	n/a					
Areas Benefiting from Flood Defences?	No	No	n/a					
Subject	Details/Re	emarks						
Groundwater	The datas	heet entry re	cords the superficial secondary aquifer (Glacial					
Vulnerability			on) as having high vulnerability.					
Bedrock Aquifer Designations	Principal Aquifer (Red Crag)							

Hydrogeological,	hydrologi	cal flooding					
Subject Subject	Details/I						
Superficial Aquifer Designations	Secondary Aquifer [undifferentiated] (Glacial Till/Lowestoft Formation).						
Nearest Surface Water Feature		e surface wate ern area of the	er feature (drainage ditch) was identified within site.				
River Quality	No data	within 500 m r	adius.				
BGS Groundwater Flooding Susceptibility		ootential for gr	oundwater flooding to occur on site.				
Industrial land us	se						
Subject	On site	Within 250 m	Details/Remarks				
Contemporary Trade Directory Entries	0	2	Ipswich Pet Cemetery was located 75m to the north-west and a domestic cleaning service was located 110m to the south- east. Both were recorded as Inactive.				
Fuel Station Entries	0	0	None				
Points of Interest - Commercial Services	0	1	A distribution and haulage service was located approx. 13m to the north.				
Points of Interest - Education and Health	0	2	Both entries related to the Pet Cemetery 75m to the west.				
Points of Interest - Manufacturing and Production	2	0	Both entries related to the business centre which is located off site to the west.				
Points of Interest - Public Infrastructure	0	1	Related to the Pet Cemetery.				
Points of Interest - Recreational and Environmental	0	0	Beyond 251m – The nearest entry was a playground located approx. 475m to the south-east.				

Sensitive land use	е		
Subject	On site	Within 250 m	Details/Remarks
Environmentally Sensitive Areas	0	0	The Suffolk River Valleys located approx. 340m to the north were recorded as environmentally sensitive areas.
Nitrate Vulnerable Zones	Yes - 4	·	Site located within nitrate vulnerable zones for Bucklesham Mill River, River Lark/Fynn and River Gipping (surface waters) and Sandlings and Chelmsford (groundwater).

3.5 Environmental site reconnaissance visit

The site reconnaissance visit encountered the following potential contaminative sources:

- Occasional litter around site periphery, along Humber Doucy Lane, Nine Cottages Lane and localised fly-tipping along the access track to Lacey's Farm.
- agricultural vehicular use may have led to fuel and oil leaks and spills.
- crop spraying

3.6 Summary of desk study

A summary of the salient points from the desk study review is provided in Table 3.6.

Subject	Relevant detail					
Site History	Historically the site has been occupied by open land parcels used for agriculture and has included ponds within the eastern part of the site and land drains in the south and along the site boundaries. Various ponds, some associated with land drains have been located around the periphery of the site.					
	An unnamed track/road has always crossed the northern part of the site providing access to Allen's House/Lacey's Farm located east of the site.					
	The site has historically been surrounded by open farmland, farm buildings, a residential estate to the south-west, a yard and water towers to the east and a refuse tip to the north-west. More recently a small business park and Millennium Cemetery has been developed to the west of the northern area of the site.					
Geological Units and Aquifer Designations	Lowestoft Formation (Glacial Till) – Secondary Aquifer - Undifferentiated. Red Crag – Principal Aquifer					
Identified potential sources of on-site contaminants	Back filled ponds and land drains on site, around the periphery of the site and within close proximity to the site boundary. These features have been backfilled with materials of unknown origin that could contain contaminants of concern and contain degradable materials that could lead to the production of ground gas.					
	Materials used to create tracks and foot paths across the site. Agricultural machinery operating on site and crop spraying.					
Identified potential sources of off-site contaminants	Former refuse tip to the north-west of the site. Former yard located adjacent to eastern site boundary at the location of the water tower. Backfilled ponds and land drains located on and around the peripher of the site and on nearby land (includes former clay pit). Former Pet Cemetery and existing Millennium Cemetery to the					
	northwest of the site. Occasional litter around site periphery, along Humber Doucy Lane Nine Cottages Lane and localised fly-tipping along the access track to Lacey's Farm.					
Other key information	The site is located within Zone III (Total catchment) of a Source Protection Zone I is located approx. 340m to the northeast of the site					
	The site was located within a Low risk UXO area, but close to a Moderate risk area and two UXO's have been identified within a 5 km radius of the site.					

3.7 Outline conceptual model

3.7.1 Introduction

A conceptual model represents the characteristics of the site that show the possible relationship between sources (contaminants), pathways and receptors (or targets).

The following outline conceptual model has been based on the results of the desk study and environmental reconnaissance of the site. It has been used in the design of the intrusive investigation in order to effectively target the exploratory holes.

The outline conceptual model is developed later in the report, in the light of the results of the intrusive investigation, to produce the refined conceptual model given in subsection 7.4.

The proposed development comprises redevelopment for residential purposes, mainly low-rise residential housing. A 'residential with homegrown produce' end use category has therefore been adopted for the risk assessment of the site.

In order to classify the anticipated risk associated with the proposed development the classification system defined in Table A shown in Appendix 2 has been adopted (from CIRIA C552). The level of risk was determined by the product of the potential consequence (minor, mild, medium, severe) of the contaminant hazard and probability of it occurring (unlikely, low likelihood, likely, high likelihood). A risk level has been assigned to each possible pollutant linkage.

3.7.2 Potential sources, pathways and receptors

The potential sources, pathways and receptors identified by the desk study data are summarised in Table 3.7.2.

Potential sources	
On site:	Off site:
Any made ground materials used to backfill ponds, ditches and land drains on site or used to create footpaths and tracks across the site.	Off-site migration of contamination from nearby current and historic land uses including yards and farm buildings
Any agricultural vehicular use on site that may have led to leaks and spills.	Ground gas from made ground from backfilled off-site ponds and land drains.
Crop Spraying.	Possible ground gas migration from historical refuse tip.
Potential risk for UXO.	Leaching and migration of contaminants associated with former Pet Cemetery and
Sulphate and acidic pH contents in the made ground and natural deposits.	current Millennium Cemetery located to the north-west of the site.
Potential pathways	
Direct contact	
Inhalation	
Ingestion	
Leaching and migration via groundwater	
Migration via permeable soils	
Uptake by plants.	
Potential receptors	
End users	
Groundworkers	
Controlled waters	
Off-Site receptors	
Building materials	
Vegetation.	

3.7.3 Potential pollutant linkages

The considered potential source-pathway-receptor linkages for the site and their perceived level of associated risk are summarised in Table 3.7.3A.

Source	Contaminants	Pathway	Receptor	Probability	Consequence	Risk classification	Comments
Localised made ground (used as backfill in ponds, ditches and land drains and to form tracks and footpaths)	Heavy metals, PAH, TPH	Direct contact Ingestion Inhalation	End users Groundworkers Off-site receptors	Low Likelihood Low Likelihood Low Likelihood	Mild Minor Minor	Low Very Low Very Low	Less of a risk considered to Groundworkers and off-site receptors due to limited exposure
		Leaching and migration via groundwater	Controlled Waters Off-site receptors	Unlikely	Medium Minor	Low Very Low	The Red Crag located beneath the Lowestoft Formation is a Principal Aquifer, but local borehole logs suggest the overlying Lowestoft Formation is mainly cohesive and has a thickness of 21.6m locally.
		Plant uptake	Vegetation	Low likelihood	Minor	Very Low	Any made ground present on site is considered likely to be present in localised areas associated with backfilled features and access tracks/pathways. As a result a low likelihood is generally expected for the probability of receptors coming into potential contact with it.
		Direct contact	Building materials	Low Likelihood	Minor	Very Low	
	Ground gas, vapour	Inhalation	End users Groundworkers	Low Likelihood Low Likelihood	Mild Minor	Low Very Low	
	Sulphate and pH	Direct contact	Building materials	Low Likelihood	Minor	Low	
	Asbestos	Inhalation	End users Groundworker Off-site receptors	Low likelihood Low likelihood Low likelihood	Medium Medium medium	Moderate/Low Moderate/Low Moderate/Low	The risk posed to human site receptors from any asbestos present within localised made ground can be reduced by minimal disturbance, dampening down of soils and provision of appropriate PPE.

Source	Contaminants	Pathway	Receptor	Probability	Consequence	Risk classification	Comments
Agricultural vehicle movements on site (localised leaks and spills) and crop spraying Hydrocarbons (TPH, PAH, BTEX, MTBE) Herbicides and pesticides.	(TPH, PAH, BTEX,	Direct contact Ingestion Inhalation	End users Groundworkers Off-site receptors	Low Likelihood Low Likelihood Low Likelihood	Mild Minor Minor	Low Very Low Very Low	Less of a risk considered to Groundworkers and off-site receptors due to limited exposure
	Leaching and migration via groundwater	Controlled Waters Off-site receptors	Unlikely Unlikely	Medium Minor	Low Very Low	Generally cohesive nature of overlying Lowestoft formation and significant thickness will mitigate potential risk to Principal Aquifer.	
		Direct contact	Building materials	Low Likelihood	Minor	Very Low	A potential risk would only be present where contamination was present within an area that coincided with building structures.
Off-site backfilled ponds and land drains, cemeteries, yards and farm buildings	Heavy metals, hydrocarbons (TPH, PAH, BTEX, MTBE), VOC, SVOC, pathogens, ground gases, vapours.	Leaching and migration via groundwater and permeable soils.	End users Groundworkers Building materials	Unlikely	Minor	Very Low	The geology in the local area comprises Lowestoft till which is typically of a cohesive nature, which will reduce the likelihood of potential contaminants migrating onto site from off-site sources.

Asbestos, invasive plant species and UXO is not compatible with the above risk assessment matrix, so these items have been given separate consideration in Table 3.7.3B.

Source/Contaminant	Associated impacts/Issues
Asbestos	Loose asbestos fibres or asbestos containing materials could be present within any made ground materials used as backfill to form pathways/tracks across the site. These features are localised, which will reduce the potential for exposure to site receptors and the risk can be further mitigated by the dampening down of soils during dry periods and providing groundworkers with asbestos awareness training and appropriate PPE. Should any asbestos be identified during the groundworks an assessment of the asbestos contamination should be undertaken by a geoenvironmental engineer to determine an
Invasive Plant Species	appropriate course of action. No obvious signs of invasive or problematic plant species such as Japanese Knotweed were noted during the site reconnaissance visit. Consideration could be given to undertaking a specialist survey to identify any invasive plant species on the site, or perimeter to minimise the risk of unexpected costs associated with treatment and removal at a later date.
UXO	The site is located within a Low Risk zone for UXO based on the information obtained from the Zetica database, but the site is located close to a Moderate risk area (the town of Ipswich) and two UXO's have been found within a 5 km radius of the site. It may be prudent to undertake a UXO desk study to provide further information on the status of the site and potential risks associated with UXO, especially with the site having been open farmland prior to, during and post WW2, with any bomb strikes potentially going unrecorded.

4. GROUND INVESTIGATION

4.1 Fieldwork

The investigation comprised the fieldwork summarised in Table 4.1A:

Table 4.1A – Summa	<u>Table 4.1A – Summary of exploratory holes</u>							
Type of excavation	Exploratory	Dates undertaken	Depths of exploratory					
	hole numbers		holes (m)					
Cable percussion	BH1 to BH3	31/08/22 to 27/09/22	15.0 m					
boreholes								
Window samples	WS1 to WS10	10/08/22 to 11/08/22	2.80 to 4.00 m					
Trial pits	TP1 to TP18	15/08/22 to 17/08/22	2.50 to 3.00 m					
BRE DG365	TP195, TP205,	17/08/22 to 18/08/22	2.50 to 3.00 m					
Soakage Pits	TP215, TP225,							
	TP235 & TP245							
Dynamic cone	DCP1 to DCP20	11/08/22 to 25/08/22	0.81 to 0.88 m					
penetrometer								
(DCP) tests								

The locations of the exploratory holes are illustrated on drawing number 16118SI/2. The locations of the exploratory holes were chosen by RSA Geotechnics to provide reasonable coverage of the site and to target areas of potential contamination sources identified during the desk study and site reconnaissance visit. The selected positions were set out using GPS equipment and the co-ordinates are presented on the exploratory hole logs.

The start of the fieldwork was delayed until after the barley crop had been harvested on the main field and smaller field to the southeast, to avoid damage to the crop from the site investigation equipment.

A utilities information park was obtained for the site (see Appendix 8) and surrounding area. No existing mains utilities were recorded to currently cross the site. However, historical information provided by the Client suggests that older metal water mains cross the site from the old water tower and to Lacey's Farm, but these are no longer in use, but may still be present. All of the exploratory hole locations were scanned with a cable avoidance tool (CAT) and the three cable percussion boreholes were commenced with a hand dug pit to 1.2 m depth. No services were encountered in the exploratory holes.

The methodology of undertaking the fieldwork is given in Appendix 1. Full details of the fieldwork and the ground conditions are shown on the logs and test reports.

Ground gas monitoring pipes were installed in five exploratory holes to monitor the presence of any ground gas and groundwater beneath the site. Details of the installations are shown in Table 4.1.B.

Table 4.1B – Response zones of installations						
Location	Date of installation	Response zone (mbgl)	e Strata			
WS4	10/08/22	0.50 - 3.90	Topsoil/Lowestoft Formation			
WS5	10/08/22	0.50 - 4.00	Made Ground/Lowestoft Formation			
BH1	01/09/22	0.50 - 3.50	Topsoil/Lowestoft Formation			
BH2	22/09/22	0.50 - 3.50	Topsoil/Lowestoft Formation			
ВН3	27/09/22	0.50 - 3.50	Topsoil/Lowestoft Formation			

The wells were monitored on six occasions, on 30 September and 11, 17, 20, 24 and 28 October 2022. The monitoring results are presented later in this report.

Full details of the fieldwork and the ground conditions are shown on the relevant exploratory hole logs later in this report.

4.2 Laboratory testing

Soil samples obtained from the investigation works were scheduled for the geotechnical and geoenvironmental laboratory testing as detailed in Tables 4.2A and 4.2B.

Test	Number of tests in each stratum			Remarks
	Topsoil/Subsoi	Made ground	Lowestoft Formation	4
Water Content	1	34.	52	
Plasticity Limit	·		12	
Undrained Triaxial	150		4	
Particle Size Distribution (PSD)	-		4	
pH and sulphate	12.1		9	

All the samples from the initial window sampling were screened with a photo-ionization detector (PID) to measure concentrations of volatile organic compounds (VOCs) prior to undertaking the environmental testing.

The geotechnical soil laboratory testing and PID screening was carried out between 19 August and 20 October 2022 at Soil Property Testing Ltd.'s UKAS accredited laboratory and RSA Geotechnics In-house laboratory. The testing was conducted in accordance with BS 1377: 1990, British Standard 'Methods of tests for soils for civil engineering purposes'.

Determinand	Number of tests in each stratum			Remarks
	Topsoil	Made Ground	Lowestoft Formation	
CLEA suite*	20		2	
Asbestos screen	10	-	-	
Organochlorine Pesticides	9	5	1	
Organophosphorus Pesticides	9	-	1	
Triazine Herbicides	9	(a)	1	
WAC leachate suite	3 ¹	3	11	2 Topsoil Composite, 1 Topsoil/Lowestoft Composite ¹

^{*} Includes commonly occurring determinands including heavy metals, polycyclic aromatic hydrocarbons (PAH), phenol, cyanide, sulphate and pH

The chemical contamination analyses were carried out between 16 and 26 August 2022, by DETS Ltd, which has UKAS, ISO 17025 and MCERTS accreditation. The Waste acceptance criteria (WAC) testing was undertaken between 15 and 22 September 2022 following review of the initial results on combined composite samples from across the site.

The results of the laboratory testing are given in the test reports later in this report.

5. GROUND CONDITIONS

5.1 British Geological Survey Data

The British Geological Survey (BGS) GeoIndex Onshore viewer and Sheet 207 'Ipswich, bedrock and Superficial Edition, 2006', indicated that the site was underlain by Diamicton (Boulder Clay) and Glacial Sand and Gravel of the Lowestoft Formation – Albion Glacigenic Group, underlain by the Kesgrave Catchment Subgroup of the Dunwich Group, the Red Crag Formation of the Crag Group and the London Clay Formation of the Thames Group. The geological map for the area indicated that the Red Crag pinched out to the northwest, west and northeast of the site, and Glacial Sand and Gravel was exposed in the railway cutting to the north of the site.

Lowestoft Formation (Albion Glaciogenic Group – Anglian Stage, 0.48 – 0.42 Ma)

Remapping and reclassification of the glacial deposits of East Anglia now subdivide the former Lowestoft Till into several different tills occurring over specific areas of East Anglia. However, the till beneath the site has not been classified on the updated map other than as Glacial Till of the Lowestoft Formation of the Albion Glacigenic Group.

The Lowestoft Formation forms an extensive sheet of chalky lodgement till, together with outwash sands and gravels, silts and clays. The lodgement till was deposited at the base of a glacier and its overconsolidated nature is due to the weight of the ice above. The tills are characterised by their chalk and flint content and the carbonate content of the till matrix is about 30%. The Lowestoft Formation unconformably overlies a large range of Mesozoic, Palaeogene, Neogene and early Pleistocene bedrock formations.

The Lowestoft Formation may comprise three main soil types. The first is the Lodgement Till which typically consists of overconsolidated clay that contains varying amounts of gravel and sometimes cobbles and boulders. Lodgement Till was deposited at the base of the glacier and its overconsolidated nature is due to the weight of the ice above. Some of the gravel, cobble and boulder materials can be transported great distances and can be completely different to the local geology.

The second soil type comprises glaciofluvial sand and gravel. These are soils that are deposited in a fluvial environment probably as outwash from the glacier. They predominantly comprise sands and gravels, but layers of silt and clay can also be present.

The third soil type comprises glaciolacustrine silts. These are soils that are deposited in a lake environment temporarily dammed by ice and also as a result of daily or seasonal outwash as the glacier retreats. The soils are predominantly silts with pockets and lenses of clay.

Kesgrave Catchment Subgroup (Dunwich Group – Pleistocene, 2.58 – 0.01 Ma)

The Kesgrave Catchment Subgroup (formerly Kesgrave Formation and Kesgrave Sands and Gravels) is a variable deposit found across east Essex and Suffolk, which encompasses fluvial, lacustrine and organic deposits of the pre-diversionary River Thames, and the pre-glacial soils developed on such deposits. Most of the surviving deposits are fluvial gravels, with sedimentary structures indicating deposition by a braided river. Lacustrine silts and clays and

organic peats are uncommon. The gravels are characterised by quartz and quartzite from the Triassic, Carboniferous and Devonian rocks of the West Midlands, Welsh Borderland and possibly southwestern Pennines, and by felsic volcanic rocks from northern Wales. The presence of mega-erratics and glacially-fractured sand grains indicate glacial erosion in the headwater regions of the river. The fluvial gravels occupy terrace levels, and formations and members are defined on the basis of altitude and pebble clast content. The members comprise bodies of cross-bedded and massive, moderately sorted sand and gravel. The aggradations are generally entrenched into bedrock with a difference in surface elevation of at least 5m. The upper part of the gravels which dominate the subgroup are commonly affected by pedogenesis.

Red Crag Formation (Crag Group – Late Pliocene to Early Pleistocene, 3.60 – 2.12 Ma)

The Red Crag is generally composed of iron-stained sands, often containing abundant shells. The sands are often coarse with occasional muddy or silty bands and range in colour from yellow to reddy brown when weathered and pale yellow to reddy brown and grey when unweathered. Gravel is not abundant within the Red Crag except at its base, but where present consists of angular to rounded flint and quartz, with occasional cobbles or boulders of igneous, metamorphic and sedimentary erratics. Phosphatic nodules are also present within the Red Crag along with derived Jurassic fossils including belemnites and sharks teeth.

London Clay Formation (Eocene – 56 – 47.8 Ma)

The London Clay Formation is an Eocene deposit, comprising overconsolidated illite rich clay, which can locally contain pockets and partings of silt and fine sand. Towards both the top and base of the stratum the London Clay is found to be increasingly silty and even sandy. When fresh the clay is found to be grey in colour but this weathers to a brown colour. It is usually found to be in a stiff or very stiff condition, but weathers to a firm to stiff, or firm consistency. It is generally fissured and locally is thinly laminated. The London Clay was deposited in a deep-sea environment.

5.1.1 BGS Borehole Data

Relevant BGS borehole logs for the surrounding area were reviewed as part of the desk study, including TM14NE32, TM14NE31, TM14NE50 and TM14NE55.

TM14NE32 – The Croft, Nr Westerfield (161 m North)

Topsoil	0.00 – 0.30 m
Brown CLAY with Chalk (Lowestoft Fm)	0.30 – 3.00 m
Fine to Medium SAND and Flint and Quartz GRAVEL (Lowestoft Fm)	3.00 - 24.30 m

TM14NE31 - Westerfield House (187 m West)

Topsoil	0.00 - 0.30 m
Brown CLAY with Chalk (Lowestoft Fm)	0.30 – 1.80 m
Medium clayey SAND and Flint, Quartz & Chalk GRAVEL (Lowestoft Fm)	1.80 – 12.80 m
Fine to Medium clayey SAND (Chillesford Sand)	12.80 – 18.30 m
Fine to Medium shelly clayey SAND (Red Crag)	18.30 – 24.40 m

TM14NE50 - Upper Lodge Cottage, Tuddenham Road (422 m West)

Topsoil	$0.00 - 0.91 \mathrm{m}$
Yellow brown sandy CLAY with Chalk (Lowestoft Fm)	0.91 - 14.63 m
SAND and GRAVEL (Lowestoft Fm)	14.63 - 20.73 m
Shelly SAND (Red Crag)	20.73 - 25.30 m
CLAY (London Clay)	25.30 - 37.49 m
Green-grey SAND and GRAVEL (Lambeth Group)	37.49 - 41.76 m
CHALK (White Chalk Subgroup)	41.76 ->63.09 m

TM14NE55 - Hill Farm, Tuddenham (791 m East)

Topsoil	$0.00 - 0.30 \mathrm{m}$
Brown sandy CLAY with Chalk (Lowestoft Fm)	0.30 - 7.00 m
Clayey SAND and Flint, Quartz and Chalk GRAVEL (Lowestoft Fm)	7.00 - 23.50 m
CLAY (London Clay)	23.50 ->23.80 m

5.2 Summary of ground investigation data

A summary of the ground conditions encountered during the exploratory investigation has been provided in Table 5.2.

Stratum	Min/Max depth of top of stratum (m)	Min/Max depth of base of stratum (m)	Min/Max thickness of stratum (m)			
Topsoil/Subsoil	G.L	0.25 - 0.70	0.25 - 0.70			
Possible Made Ground/Made Ground	0.40 - 0.50	0.75 - 1.30	0.35 - 0.80			
Lowestoft Formation (Cohesive)	0.25 - 1.30	0.75 – 5.95	0.35 - 5.40			
Lowestoft Formation (Granular)	0.75 – 5.95	>15.00*	>13.50*			
Groundwater	No groundwater encountered during drilling					
	Perched Groundwater in WS5 at 2.43 to 2.86 mbgl during monitoring.					

5.2.1 Topsoil/Subsoil and Possible Made Ground

Topsoil was encountered in every exploratory hole from ground level and was generally found to comprise firm to very stiff dark brown slightly silty to silty sandy clay and clayey to

very clayey medium to coarse sand with a little fine to coarse flint gravel, rootlets and plant debris.

A layer of subsoil was recorded in WS2 from 0.4 to 0.7 m depth, comprising very stiff dark brown slightly silty sandy clay with some fine to coarse flint gravel, rootlets and rare brick fragments.

Possible made ground was encountered in WS5 from 0.50-1.30 m depth, potentially associated with an historic backfilled pond. The deposit was found to comprise stiff dark brown slightly silty very sandy clay with some flint and chalk gravel and rare fine gravel sized brick fragments.

5.2.2 Lowestoft Formation

5.2.2.1 Cohesive Glacial Till (Diamicton)

The cohesive Lowestoft Formation was generally found to comprise firm to very stiff/hard occasionally dry and blocky, medium to extremely high strength mottled dark brown, red brown, orange brown, grey brown and grey slightly silty to silty sandy to very sandy clay. The clay contained a little to much angular to subrounded fine to coarse flint gravel and occasional to much angular to subangular fine to coarse chalk gravel and pockets of medium to coarse orange brown sand, with occasional cobble sized flint and chalk.

The cover of diamicton appeared to increase in thickness from north to south beneath the site.

The uppermost diamicton consisted of a 'crust' of dry, friable and desiccated intermediate plasticity clay with a medium volume change potential that typically extended to depths in the order of 1.5 m. Roots and rootlets were recorded to depths of 1.70 m within the cohesive till.

A layer of soft silty very sandy clay with some flint gravel was encountered from 0.45 to 0.70 m depth in WS6, 0.40 to 0.80 m in WS7 and 3.10 to 3.55 m in WS8.

A shallow layer of sand was encountered in WS10 from 0.45 to 1.25 m, underlain by firm high strength silty sandy clay with much fine to coarse flint and chalk gravel, with a lens of fine to medium sand encountered from 1.10 to 1.40 m in TP12.

5.2.2.2 <u>Granular Glacial Sand and Gravel</u>

The top of the granular Lowestoft Formation was encountered below the diamicton at depths ranging from 0.75 m at the northern end of the site, increasing to 5.8 m at the south-eastern end.

The granular Lowestoft Formation generally comprised medium dense to very dense orangebrown, red brown and pale brown silty clayey to very clayey fine to coarse sand with occasional subrounded to subangular fine to coarse flint and chalk gravel. It occasionally contained pockets of soft to stiff high strength grey and brown sandy silty clay and medium dense to very dense slightly silty sandy subrounded to subangular fine to coarse flint gravel, with occasional flint cobbles.

5.2.3 Groundwater

Groundwater was not recorded in any of the exploratory holes during the fieldwork.

The groundwater levels in the five installations were measured on six return visits and the results are recorded in Table 5.2.3.

Location	Depth of well (m)	Depth to groundwater mbgl							
		30-09-22	11-10-22	17-10-22	20-10-22	24-10-22	28-10-22		
WS4	4.00	Dry	Dry	Dry	Dry	Dry	Dry		
WS5	4.00	2.70	2.76	2.78	2.43	2.46	2.86		
BH1	3.50	Dry	Dry	Dry	Dry	Dry	Dry		
BH2	3.50	Dry	Dry	Dry	Dry	Dry	Dry		
ВН3	3.50	Dry	Dry	Dry	Dry	Dry	Dry		

5.2.4 Visual or olfactory evidence of contamination

Occasional litter was noted around the site periphery associated with the local roads, including an area of fly-tipping along the access track to Allen's House/Lacey's Farm.

Possible made ground in WS5 from 0.50 - 1.30 m depth, potentially associated with an historic backfilled pond, contained rare fine gravel sized brick fragments.

No odours or staining were recorded in the exploratory holes.

6. GEOTECHNICAL CONSIDERATIONS

6.1 The proposed scheme

The proposed scheme comprises of the construction of a low-rise residential development, with associated private gardens and areas of communal landscaping and served by access roads. The layout of the proposed development considered in this report is illustrated on the current Draft Masterplan in drawing number 16118SI/1.

The proposed sport pitches to the north of the residential development area and the land to the south-west of Humber Doucy Lane shown on the Draft Masterplan do not form part of the land parcel under assessment by this report.

6.2 Structural foundations

No foundations loads were provided at the time of preparation of this report, as the scheme was in a preliminary stage. Structural loads are expected to be low to moderate.

6.2.1 Shallow Foundations

It is anticipated that the new modestly loaded foundations may take the form of trenchfill foundations or individual pad/pier foundations spanned by ground beams bearing upon moisture stable Lowestoft Formation. For most of the development the bearing strata will comprise the firm to stiff gravelly clay. However, locally there may be pockets and lenses of sand and silt present within the shallow Lowestoft Formation that may be exposed at foundation level. Below the northern end of the site where the cohesive Lowestoft Formation is locally thin, the underlying glacial sands and gravels of the Lowestoft Formation will form the bearing strata.

The presence of roots and rootlets and the visual assessment of the recovered samples from the exploratory holes indicated that the shallow clays are significantly desiccated due to abstraction of soil moisture by the arable crops, the surrounding hedgerows and trees and the exceptionally hot and dry weather experienced during the summer of 2022. This conclusion is corroborated by comparison of the water contents with plasticity data derived from the laboratory testing and perusal of the plot of water content against depth presented on page 8 of 24 of the Soil Property Testing Limited's laboratory testing report presented after the exploratory hole logs later in this report.

The design of the new foundations should also consider the potential influence of the existing and proposed trees on the medium volume change potential bearing strata, especially for properties close to the perimeter of the site.

The topographic survey and any arboricultural surveys should be used to determine the location, species and height of existing and felled trees, on and around the site, to help estimate the likely foundation depths required to bear upon clays beyond the range of influence of the vegetation.

6.2.1.1 <u>Desiccation and Heave</u>

Guidance regarding the depth of new foundations within the zone of influence of trees may be taken from NHBC Standards Chapter 4.2, 'Building near trees', considering the plasticity of the clay, the species of each tree, its mature height and the distance between the tree and the proposed foundation.

Plasticity index testing on recovered samples show the Lowestoft Formation to be of intermediate plasticity with moderate volume change potential. Chart 2 in Chapter 4.2 is recommended for assessing the depths of spread foundations in the vicinity of former, existing, and proposed trees throughout the site. The presence of desiccation due to the arable crops grown on the fields also needs to be considered.

Chart 2 recommends a minimum foundation depth of 0.9 m be adopted for all new foundations bearing upon the moderate volume change potential clays. However, all foundations within the cohesive Lowestoft Formation should be locally deepened to fully penetrate the following materials: -

- i) Topsoil, made ground and ground disturbed by the removal of former trees.
- ii) Soft clays (defined as having shear strengths less than 40 kN/m² when measured with a calibrated shear vane). Clay soils may deteriorate further in strength at the base of foundation excavations if exposed to inclement weather and such material should be removed before casting foundation concrete.
- iii) Clay soils containing significant roots and rootlets.
- iv) Moisture deficient and desiccated clays that are liable to swell as the arable crops which have been extracting moisture from the shallow soils are no longer grown, or trees around the perimeter should die or be felled. Clays considered to be desiccated clays were widely recorded in most of the exploratory hole locations across the site regardless of their locations relative to the existing vegetation, where possible desiccation was revealed extending to depths in the order of 1.5 to 1.8 m.
- v) Clays within the range of influence of former and existing trees and any new planting that may be included in the scheme, based upon Chart 2 of Chapter 4.2. All existing trees within at least 25 m of the building footprints should be considered. Locally foundation depths up to 2.0 2.5 m may be required for foundations close to the existing moderate to high water demand trees as well as the mature hedgerows present around the perimeter of the fields.

It should be borne in mind that the NHBC design charts are based upon the influence of a single tree growing in isolation. Where trees grow close to each other, or hedgerows are present and potentially are competing for the same soil moisture, the aggregate depth of influence of the trees/hedges may be greater than that predicted by Chart 2. Conversely, if the soils are saturated, or there is an alternative source of moisture, such as nearby ponds,

then trees may be less liable to attempt to abstract moisture from the deeper clays when moisture is more readily available, and Chart 2 may overestimate the depth of influence in these situations.

Beneath the northern end of the site, where locally the cover of Lowestoft Formation clay is thin, some structures will be founded on the granular Lowestoft Formation. However, because it would not be certain whether the sand and gravel exposed at shallow depth is the true glacial sand and gravel or a lense of granular soil within the clay, it would be prudent to take all foundation excavations to a minimum depth of 1.50 m.

Where foundation depths vary, they should be stepped in accordance with good building practice.

Given the presence of significant seasonal and crop related desiccation to at least 1.5 m depth revealed in most of the exploratory holes, it is recommended that vigilance should be exercised to identify any deeper desiccated soils at the time of the site works, and such soils should be fully penetrated by foundations, with reference to the NHBC Standards. To be confident of founding below any desiccated soils, inspection of foundation excavations by an experienced geotechnical engineer is recommended, especially if construction follows a period of prolonged hot dry weather.

Full anti-heave precautions should be incorporated into the foundation design for all structures.

6.2.1.2 Bearing Pressures

A lower bound shear strength of 100 kN/m² has been used in the calculation of nett allowable bearing pressures (NABP) for the site. This relatively conservative value of undrained shear strength reduces the risk of unacceptable settlement due to the imposed structural loads and allows for some seasonal loss of strength due to the shallow soils recovering moisture during the wetter times of year and when exposed during construction.

Limited soft clay was encountered during the fieldwork. However, should any soft clay, silt, made or ground disturbed by the installation of field drains be encountered at founding depth, it should be fully penetrated so that the foundations bear upon the underlying higher strength undisturbed deposits. If the groundworker is uncertain about the identity and strength of the bearing stratum, the base of the foundations should be inspected by an experienced geotechnical engineer for evidence of desiccation.

NABPs have been calculated for conventional spread foundations bearing at a minimum depth of 1.5 m, to fully penetrate any desiccated clay, and based upon restricting settlements to no more than 25 mm. NABP is the maximum permissible increase in vertical stress in excess of existing overburden pressure at foundation level. A soil density equal to 20 kN/m³ may be assumed in the calculation of overburden pressures.

Consolidation settlement equivalent to about half of the predicted total settlements will take place over a period of months depending upon the presence of fissures and sand and silt layers that will promote the dissipation of excess pore pressures in the clay. Where foundations span a change in soil type from clay to sand, it is recommended that nominal reinforcement is placed at the base of the foundation, to limit the potential for differential settlement as the soils consolidate at contrasting rates.

The following table of nett allowable bearing pressures (NABP) may be adopted in the design of spread foundations resting upon the moisture stable cohesive Lowestoft Formation and the granular Lowestoft Formation. The nett allowable bearing pressures are based upon the undrained shear strengths and the standard penetration tests determined in the field.

Table 6.4.2 - Nett	allowable bearing pro	essures for spread founda	ations .				
Foundation	Foundation	Nett allowable bearing pressure (kN/m²)					
depth (m)	width (m)	Strip	Pad				
1.50	0.60	240	-				
	1.00	220	1				
	1.50	210	255				
	2.00	-	245				
	2.50	-	240				
2.00	0.60	250	-				
	1.00	230	•				
	1.50	220	265				
	2.00	-	255				
	2.50	-	250				

If the calculated foundation loads are not sufficient, then piled foundations could be considered, bearing onto the granular deposits encountered at depth.

6.2.2 Piled foundations

It is not envisaged that piled foundations will be required for the proposed low-rise development. However, should the final scheme be amended, and piled foundations are required, then information relating to pile design parameters can be provided.

6.3 Ground floors and anti-heave precautions

NHBC Standards Chapter 4.2 states that full anti-heave precautions, including suspended floors, should be adopted where made ground 0.6m or more in thickness is present or where foundations are within the range of influence of existing trees and foundation depths derived from the Chart 2 are greater than 1.5 m.

In view of the presence of the medium volume change potential shrinkable soils, and the presence of significant desiccation due to abstraction by the arable crop and seasonal moisture deficits, it is recommended that suspended floors and full anti-heave precautions

be adopted throughout all the dwellings. Anti-heave precautions should be designed and constructed in accordance with NHBC Standards, Volume 1, Chapter 5.2.

6.4 Access roads and areas of hardstanding

Inferred California Bearing Ratio (CBR) values of 13% to 36% were recorded at 0.50 m depth across the site based on the results of the dynamic cone penetrometer testing (DCP), averaging 21.5%. However, the inferred CBR values from G.L to 0.88 m depth ranged from 1.4-119%. The higher results are likely to be due to the presence of coarse gravel obstructing the drive cone, combined with the localised seasonal desiccation. It is considered that the high CBR values inferred from these in-situ tests are not representative of the normal site conditions and should be used with caution.

It is recommended that the design of access roads and hardstanding should be based upon equilibrium subgrade California Bearing Ratio (CBR) values, as the cohesive soils are likely to return to a wetter equilibrium water content in the long term, once covered by the road pavement.

A preliminary equilibrium subgrade California Bearing Ratio (CBR) design value of 4% is therefore recommended for the design of access roads and parking areas bearing onto the intermediate plasticity cohesive natural soils (Plasticity Indices = 21% to 31%). The CBR values are based upon the equilibrium CBR provided in Table C1 of TRRL Laboratory Report LR1132 'The structural design of bituminous roads, 1984' based upon the plasticity of the deposit and assuming a low water table, average construction conditions and a thin pavement construction.

A lower bound CBR value of 2% is recommended for the design of roads constructed on subgrades composed of disturbed and made ground, due to the variability of such deposits.

Consideration should be given to undertaking in-situ CBR measurements or plate bearing tests (PBT) on prepared formations to provide final pavement design parameters. Prepared formations will be prone to deterioration in periods of wet weather and should be protected by the prompt placing of the subbase layers.

It is recommended that all prepared subgrades are proof rolled with a heavy dead-weight roller and any 'soft' or 'loose' spots identified by the passing of the roller should be removed and replaced with locally thickened subbase materials. Root balls from previous trees and any obviously desiccated clays should be removed. A flexible form of pavement construction is recommended due to the potential for differential movement as the water content of the clay subgrade changes following construction.

6.5 **Groundworks**

All excavations requiring entry by site personnel will require temporary support or battering back to a stable angle in accordance with the requirements of Health and Safety legislation, to enable work to be carried out safely within them. Excavations should be considered

unstable irrespective of depth, although near vertical sidewalls cut in the shallow stiff to hard gravelly clay are liable to be stable in the short-term and may not require shuttering when pouring concrete. Any excavation requiring entry by site personnel should be supported or battered back to a safe angle of rest, for safety reasons. Collapse of unsupported excavations could be sudden and without warning, especially where field drains may extend behind excavations.

Slow ephemeral seepages may be encountered from perched water pockets within the soils. Water may also flow from field drains that are intercepted which will need to be permanently stopped up or intercepted before digging commences. The majority of excavations are expected to remain dry for the short time that they remain open based upon observations taken during the summer of 2022, but perched water may be present during the winter months. Dewatering temporary excavations in the short-term should be achievable by simple sump pumping.

Control of surface water run-off should be maintained during construction, to ensure that contaminated or silt laden run-off does not enter the drainage ditches or ponds, in the vicinity of the site.

6.6 Soakaway drainage

Shallow soakaway drainage is not considered suitable for most of the site due to the generally cohesive nature of the shallow site soils. This is borne out by the poor soil infiltration rates in Table 6.6 (shown in red) calculated from the soakage tests conducted in most of the trial pits.

However, due to the generally granular nature of the deeper site soils and better infiltration rates calculated from the soakage tests in the boreholes, and the trial pit soakage test pits that encountered granular soils (TP195 & TP205), deeper soakaway drainage is considered feasible for the site. These might take the form of deep trench or borehole soakaways installed into the granular soils above the deep groundwater table. If deep soakaways are not permitted by the Regulators, an alternative positive drainage system should be considered, linking to existing storm drainage on Tuddenham Road and Humber Doucy Lane.

Table 6.6	– Soakag	e test infiltration rates							
Location	Depth	Strata	Infiltration rate (m/s)						
	(m)		Test 1	Test 2	Test 3				
TP195	3.00	Lowestoft Fm — Clay with sand at 2.85m	5.1 x 10 ⁻⁶	10 x 10 ⁻⁶ (Ex)	4.7 x 10 ⁻⁶ (Ex)				
TP205	3.00	Lowestoft Fm – Sand from 2 m	6.5 x 10 ⁻⁵ (Ex)	6.7 x 10 ⁻⁵	6.4 x 10 ⁻⁵				
TP215	3.00	Lowestoft Fm - Clay	6.3 x 10 ⁻⁸ (Ex)	Subsequent	Tests Not				
TP225	2.50	Lowestoft Fm - Clay	3.9 x 10 ⁻⁸ (Ex)	Undertaken F	ollowing Poor				
TP235	2.50	Lowestoft Fm - Clay	2.1 x 10 ⁻⁸ (Ex)	Infiltration of I	First Test Run				
TP245	2.50	Lowestoft Fm - Clay	1.9 x 10 ⁻⁷						
BH1	4.50	Lowestoft Fm - Gravel	1.6 x 10 ⁻⁴	6.5 x 10 ⁻⁵	5.6 x 10 ⁻⁵				
BH2	7.00	Lowestoft Fm – Sand/Gravel	1.1 x 10 ⁻⁴	1.2 x 10 ⁻⁴	1.1 x 10 ⁻⁴				
ВН3	6.00	Lowestoft Fm – Sand/Gravel	6.7 x 10 ⁻⁵	5.7 x 10 ⁻⁵	6.1 x 10 ⁻⁵				
NB: (Ex) =	Extrapol	ated Result							

Allowance should be made in the design of soakaways for the soil infiltration rate to deteriorate over time as the sands around the soakaway chamber, trenches or deep borehole 'silt up'.

Soakaways should be located at least 5 m away from foundations and settlement sensitive external pavements due to the potential for localised settlement around soakaways due to repeated inundation of the ground.

7. GEOENVIRONMENTAL CONSIDERATIONS

7.1 <u>Introduction</u>

This section describes the chemical analyses carried out and assesses the implications of any proven contamination. The results of the chemical analyses have been reviewed against the appropriate guidelines in use at the time of the preparation of this report.

The proposed scheme comprises of the construction of low-rise housing with private gardens, associated roads, parking and communal landscaping. Consequently a 'residential with plant uptake' end use has been adopted for initial assessment.

A qualitative risk assessment has been carried out in terms of a source – pathway – receptor analysis. The risk assessment analyses the significance of any contamination that has been identified on the proposed development and the local environment. The methodology for the risk assessments and legislative background is discussed in Appendix 2.

7.2 Published guidelines

The results of the chemical analyses have been interpreted by comparing them with the various published guidelines that are currently used for land quality risk assessments. The references used in the following assessment of the site have been summarised in Appendix 2.

7.3 Generic qualitative risk assessment by receptor

The following subsections review the results of the chemical laboratory analyses carried out on samples retrieved from the site, with respect to the potential receptors outlined in subsection 3.7.

To quantify risk and assign a qualitative risk category the classification system adopted in Appendix 2 has been adopted.

7.3.1 End users

The risk to end users of the development has been considered by comparing the results of the chemical analyses with the Tier 1 Human Health Screening Values as summarised in Appendix 3. As part of the general suite of contamination testing carried out, organic matter was measured. A conservative SOM value of 2.5% was adopted for the topsoil and made ground, where screening values are sensitive to organic matter contents. For natural soils a value of 1% was adopted.

7.3.1.1 <u>Inorganic contaminants</u>

Twenty-two selected soil samples were screened for a range of potential inorganic contaminants, including heavy metals and cyanide.

The recorded concentrations within the samples were considered relatively low and all fell below the adopted screening values for a 'residential with homegrown produce' end use.

A negligible risk to end users was therefore considered appropriate.

7.3.1.2 Organic contaminants

i) Phenol and Polycyclic Aromatic Hydrocarbons (PAH)

Phenols and PAH concentrations were measured in twenty-two samples collected from across the site, but recorded concentrations all fell below the adopted Tier 1 screening values for a 'residential with homegrown produce' end use.

A negligible risk from these potential contaminants was concluded.

ii) Total Petroleum Hydrocarbons (TPH)

Prior to scheduling the samples were screened using a photo-ionisation detector (PID) to check for the potential presence of volatile organics, which can indicate the presence of contaminants such as petroleum hydrocarbons, volatile and semi-volatile organic compounds (TPH/VOC/SVOC)

The PID recorded relatively low readings. This coupled with the absence of any reported odours and staining within the soils informed the decision to not undertake any hydrocarbon testing, as a potential risk was not identifiable from the data available to date.

iii) Pesticides and Herbicides

Due to the historical use of the land for agriculture, selected shallow samples from across the site were submitted for analysis of organo-chlorine and organo-phosphorous pesticides and a suite of potentially occurring herbicides.

The analysis undertaken did not record any measurable concentrations above the low limits of detection of the test methods. Hence a negligible risk was determined to end users from these potential contaminants.

7.3.1.3 Asbestos

Ten shallow soil samples were submitted for screening for the presence of asbestos. Asbestos was not identified in any of the samples screened.

It should be appreciated that the investigation works only uncover a very small proportion of the ground during the investigation works, and it is not uncommon to uncover asbestos in agricultural soils where materials have been imported to lay tracks and backfill features within the land. Made ground has been identified within localised areas of the site, suggesting potential backfilling or re-profiling of the surface in such areas. Given the variable nature of made ground materials and the size of the site, it is not possible to completely rule

out the potential for asbestos to be present and a potential ongoing risk has been identified, which is discussed further in section 7.5.1.

7.3.1.4 Ground gas

Ground gas monitoring wells have been installed in two window sample holes (WS4 and WS5) and within the deeper boreholes (BH1, BH2 and BH3) and are to be monitored on six occasions between 30 September and 28 October 2022.

The findings of the gas monitoring are summarised in Table 7.3.1.4.

Recorded Data	Minimum	Maximum	Initial Trigger Value	Number > Trigger Value	Location of Worst-Case Concentration
Methane (% v/v)	0.1	0.2	11	0	
Carbon Dioxide (% v/v)	0.1	1.9	5 ¹	0	
Oxygen (% v/v)	19.2	20.7	<172	0	BH2
Hydrogen Sulphide (ppm)	<1	1	5 ³	0	BH1
Carbon Monoxide (ppm)	<1	2	30 ³	0	
Gas Flow (I/hr)	<0.1	0.2	12		

¹ CIRIA 665

The initial trigger value of 1% v/v for methane was not exceed in any of the monitoring wells over the six rounds, with concentrations ranging from <0.1 to 0.2 % v/v.

The initial trigger value of 5% v/v for carbon dioxide was not exceeded in any of the monitoring wells over the six rounds, with concentrations ranging from <0.1 to 1.9 % v/v.

Oxygen levels recorded on site ranged between 19.2 and 20.7 % v/v and were consistently above the trigger value of 17% in all the monitoring wells. While concentrations in borehole wells are not necessarily indicative of concentrations likely to be experienced in areas such as foundation or service trench excavations, it should be noted that any oxygen depletion below normal levels can be dangerous to personnel working in such conditions.

No significantly elevated concentrations of hydrogen sulphide (maximum 1 ppm) or carbon monoxide (maximum 2 ppm) were recorded. Flow rates were generally very low during all the investigation, with a maximum of 0.2 l/hr recorded.

² Safe work in confined spaces' (HSE ACoP L101, 2014)

³ Long Term Workplace Exposure Limit (8 hour TWA)

Barometric pressures were generally moderate, ranging between 1002 to 1028 mb during the monitoring periods, with falling, rising and steady trends.

The results of the ground gas monitoring were reviewed against both the NHBC 'Traffic Light' system and the modified Wilson and Card classification system for 'Situation A - All development types except low rise housing with gardens', as set out in the CIRIA document C665, 2007. The gas results were also compared against the revised BS8485: Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings, 2015 + A1:2019.

Adopting the highest recorded value for methane of 0.2 % v/v, carbon dioxide of 1.9 % v/v and a flow rate of 0.2 l/hr (the maximum recorded flow rate), a maximum gas screening value (GSV) of 0.0004 l/hr was determined for methane and 0.0038 l/hr for carbon dioxide, for the site overall. Note that the GSV are calculated adopting the 'worst-case' concentrations of gases and the highest recorded flow regardless of the location.

The GSV for methane and carbon dioxide place the site in the NHBC 'Green' and Wilson & Card Characteristic Situation 1 (CS-1) categories, for which no anti-ground gas precautions are required for residential development.

Reference was also made to BS8485: Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings, 2015 + A1, 2019. This document presents a matrix of different building types against CIRIA Characteristic Situations that provides indicative scores for gas protection. The proposed private houses (Building Type A) by reference to Table 4, require a gas protection score of zero for a CS1 classification, for which no protective measures are required.

Reduced oxygen concentrations could pose a risk to groundworkers in confined spaces such as service trenches and foundation excavations. Monitoring of atmospheres should be undertaken prior to and during works on a precautionary basis, for ground gases and vapours, with safe systems of work in place.

Vigilance will need to be maintained throughout the site works for any degradable materials, such backfill to former ponds, that could be potential sources of ground gas and/or vapours.

7.3.1.5 Conclusion of end user risk assessment

Table 7.3.1.5 – Summary of	identified risks to end users	
Contaminants of concern	Level of associated risk	Identified active pathways
Asbestos	No definitive risk identified,	Inhalation of fibres from
	however potential for ACM	disturbance of soils in soft
	in made ground cannot be	landscaping areas.
	discounted. Moderate to	
	high potential risk assumed.	

7.3.2 Groundworkers

Construction workers and especially groundworkers could come into direct contact with the soils. Significant concentrations of potential contaminants have not been identified within the soils on site, but the potential for the presence of ACM within the ground, or undiscovered contamination cannot be fully discounted. The risk to groundworkers is mitigated by limited exposure and normal usage of personal protective equipment), although a Moderate risk from the presence of asbestos would still be identifiable should ACM be present.

No significant sources of ground gas or oxygen depletion were identified.

7.3.3 Controlled Waters

Table 7.3.3A - Site sensitivity in	relation to Controlled Waters	
Hydrological and	Direction and distance	Sensitivity rating
hydrogeological information	from site	
Nearest Surface Water Feature	Field drain on site.	Low
Aquifer Classifications	Superficial deposits – Secondary	Low
	A – undifferentiated.	
	Bedrock – Principal Aquifer	High
Source Protection Zones (SPZ)	Site located within Zone 3, with	Moderate
	Zone 2 located 170 to the NE and	
	Zone 1 340m to the NE.	
Water Abstractions	Nearest was 715m to the E and	Low to Moderate
	was a potable water abstraction	
	operated by Anglian Water.	
Groundwater Flow Direction	Anticipated to be towards the E to	wards the SPZ zone I
(known or anticipated)	and abstraction.	
Key Controlled Water	Groundwater located within the Pr	incipal Aquifer
Receptor?	beneath the site (The Crag).	

Based on the information pertained from the desk study, a potential risk to Controlled Waters in the form of groundwater within the underlying Principal Aquifer was determined.

The investigation works undertaken on site have confirmed the presence of the Lowestoft Formation to depths more than 15 m. The upper deposits of the Lowestoft Formation are typically cohesive in nature. Isolated layers of more granular materials are present within the Till but are limited in their continuity. The till is underlain by granular glacial sands and gravels. The thickness of the cohesive deposits recorded on most of the site are considered to provide sufficient cover to mitigate any risk of contaminants at surface migrating down and impacting upon deeper groundwater within the Crag Principal Aquifer.

In addition to the above, the desk study and investigation works to date have not identified any significant sources of contamination on site, or within the soils that could be considered

to pose a potential risk. A negligible risk to Controlled Waters has therefore been determined for the site.

7.3.4 Off-site human and property receptors

Neighbouring properties are considered to be at negligible risk from mobile and potential leachable contaminants migrating from the site, because of the generally low concentrations of contamination identified within the soils.

Off-site receptors could be subjected to impact from windblown dust and soil attached to the wheels of vehicles leaving the site during groundworks and disturbance of the shallow site soils. Consequently, precautions will need to be taken in order to prevent the potential for contamination to impact off-site receptors. A potential Low risk was determined.

Due to the generally very low permeability of the underlying Lowestoft Formation, surface run-off should also be managed appropriately during site works to prevent potentially contaminated run-off flowing downslope into the drainage ditches that cross the site boundary or are located around the site periphery.

7.3.5 Building materials

7.3.5.1 Below ground concrete

Twenty samples of topsoil and two samples of Lowestoft Formation were tested for water-soluble sulphate content and pH value as part of the contamination analysis. In addition, nine samples of the shallow Lowestoft Formation were tested as part of the geotechnical testing scheduled to date. The current results were compared with the guidelines outlined in BRE Special Digest 1 (SD-1), 2005, 'Concrete in Aggressive Ground'. This publication attributes a Design Sulphate Class and an Aggressive Chemical Environment for Concrete (ACEC) class for the site under consideration, based upon the nature of the site, sulphate concentrations, pH values and mobility of groundwater.

The results are summarised in Table 7.3.5.1.

Table 7.3.5.1	– Water s	oluble sulphate a	and pH assess	sment for buried	l concrete	
Stratum	рН		Water soluk (mg/l)	ole sulphate	DS class	ACEC class
	Range	Characteristic Value	Range	Characteristic Value ¹		
Topsoil	6.3-8.3	7.4	<10 – 16	<10	DS-1	AC1 ²
Lowestoft Formation	8.0-8.4	8.2	<10	<10	DS-1	AC1 ²

¹ Value is rounded to 100mg/l

² assumes worst case of mobile groundwater

The variable nature of the Lowestoft Formation means that the deposit often includes sandy granular layers and pockets amongst what is generally described as cohesive deposits containing fragments of chalk and flint. These more granular layers can contain perched water, although no groundwater was recorded within the window sample holes and trial pits during the investigation works.

7.3.5.2 Potable water pipes

Organic determinands, and the more volatile organic compounds, can potentially affect and permeate plastic pipework. The investigation has not identified significant concentrations of organic contaminants within the soils and the site is essentially considered to represent a greenfield site.

Guidance on the selection of water pipe material is contained within the UK Water Industry Research (UKWIR) report reference 10/WM/0321, 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites'. The report recommends specific investigation of the proposed pipeline route and level, with laboratory analysis and associated risk assessment to determine the specification for the pipework, once the proposed route and level is confirmed.

Based upon the current data, standard plastic supply pipework should be permissible for the supply of potable water for the development. However, liaison with the local potable water supplier should be undertaken at an early stage to confirm their requirements, if any, for pipework and backfill materials.

7.3.6 Vegetation

Nickel, copper and zinc are phytotoxic and could therefore inhibit plant growth or establishment. In order to assess the risk posed to vegetation on site from these potentially phytotoxic contaminants the concentrations of copper, zinc and nickel were compared against values given in the British Standard BS 3882: 2015, 'Specification for topsoil'.

Adopting a pH value of >7, screening values for nickel, copper and zinc are 110 mg/kg, 200 mg/kg and 300 mg/kg, respectively. No exceedances were recorded for copper, nickel or zinc indicating a negligible risk to vegetation on site from phytotoxic contaminants.

A survey for invasive plant species such as Japanese Knotweed, or other problematic plant species, was not included in the remit for the works, although none were recorded during the fieldwork. This aspect should be assessed by a suitably qualified specialist prior to commencement of siteworks.

7.4 Refined conceptual model

7.4.1 Introduction

The refined conceptual model represents the characteristics of the site that show the relevant pollutant linkages as defined by the results of the intrusive investigation. Negligible and discounted risks have not been included.

7.4.2 Plausible relevant pollutant linkages

Asbestos has been identified as a potential contaminant risk on site.

Table 7.4.2 – Risk asso	ociated with asbestos
Source/Contaminant	Associated impacts/Issues
Asbestos	No asbestos has been detected during the screening of selected samples of shallow topsoil/made ground. However, made ground is an inherently variable material, and it is not uncommon to uncover asbestos in agricultural soils where materials have been imported to lay tracks and backfill features within the land. A potential moderate to high risk was identified to site receptors including end users and ground workers from any remnant asbestos in shallow site soils.

7.5 Recommended remediation strategy

The investigation and testing carried out have recorded very limited impact to site soils from former uses of the site. For initial assessment purposes soil results were reviewed against screening values for a 'residential with homegrown produce' end use, taking into consideration the proposed residential end use of the development. No exceedances were recorded.

Asbestos containing materials (ACM) have not been identified within the soils submitted for screening but the potential presence of asbestos in shallow site soils cannot be discounted based on the testing completed to date.

It should also be appreciated that site investigation permits the inspection of only a very small proportion of site soils, and that the investigation to date may not have recorded the highest concentrations of contaminants that may be present beneath the site. Consequently, vigilance will need to be maintained throughout the development for indicators of the potential presence of contamination; and where identified further assessment will be required.

7.5.1 Contaminated land

Based on the investigation and assessment to date the concentrations of potential contaminants recorded within the soils are considered to pose a negligible risk to end users of the proposed residential development.

Asbestos has not been positively identified during screening of selected samples of shallow site soils, however it is not unusual to find buried asbestos materials within agricultural soils where such material may have been incorporated into track ways for machinery or are mixed up in made ground materials used to backfill features such as ponds and land drains. As a result, the presence of asbestos within shallow soils cannot be fully discounted. A watching brief should be maintained to identify any such materials during the groundworks, as covered in Section 7.5.4.

The topsoil recorded on site could potentially be suitable for re-use within the proposed development, subject to appropriate storage and further testing. The topsoil should be stripped and segregated from the subsoil (Lowestoft Formation) and stockpiled in an area separate from waste soil materials, to avoid mixing and cross contamination.

The topsoil stockpiles should be maintained and monitored through-out the development of the site to ensure the quality of the materials are suitable for use within landscaped areas, which are normally placed during the later stages of the development works. Guidance on stripping, handling and preparing topsoil for use is provided in Annex A of BS3882:2015. Topsoil stockpiles should not exceed the maximum heights recommended in the British Standard to avoid over-compaction.

To characterise the grade of topsoil and its potential suitability for its proposed end use the stockpiled topsoil should undergo quality testing, in accordance with BS3882:2015 to assess the soils physical and chemical composition.

Guidance in BS3882: Topsoil, suggests that the thickness of placed topsoil should not normally exceed 300 mm. The advice of the landscape architect/soil scientist for the scheme should be sought to determine the soil type and thickness requirements for the proposed soft landscaping areas included in the scheme. Greater thicknesses may be necessary for tree pits and shrub planting if present.

7.5.2 Groundworkers and off-site receptors

The soils sampled and analysed from site have not identified the presence of significant contamination, but there is always the potential for as yet undiscovered contamination to be encountered.

To prevent direct contact with the soils, groundworkers should wear protective clothing, in accordance with Health and Safety Regulations, during any groundworks. Workers should be properly equipped with dust masks, safety boots, gloves, hard hats and overalls, and where appropriate, respiratory equipment. Adequate washing and welfare facilities should

be provided, and their use should be enforced. All site workers should wash their hands before eating, drinking, or smoking. Site visitors should be supervised and protected, as necessary.

Siteworks must be undertaken without adverse impact to onsite and offsite receptors. On a precautionary basis, soils should be dampened down to prevent the generation of any dust during the works. Measures will need to be taken to prevent the migration of soils off site via the road wheels of vehicles exiting the site, and it is recommended that stockpiles be dampened down and covered, as necessary.

Consideration could be given to personal and boundary air monitoring, to confirm that the measures adopted to prevent the spread of dust are effective, and that risks are being suitably mitigated, and in the event of encountering asbestos within the soils such monitoring would be recommended.

All operatives should be trained in working with asbestos, such that they can identify such materials and are aware of the potential risks, the need to prevent the generation of dust, the requirements for PPE/RPE, and the duty of care requirements.

7.5.3 Ground gas

Based upon the absence of any significant sources of gas in the exploratory holes and the results of the monitoring, ground gas is not considered to pose a credible risk to the development and no ground gas precautions are required in the design.

7.5.4 Watching brief and discovery

A watching brief or discovery strategy should be maintained throughout the groundworks to identify any previously undiscovered contamination, as it is possible that the highest concentrations of contaminants may not have been discovered by the investigations to date. The potential for undiscovered contamination to be encountered on site should be communicated to site workers at induction stage, together with the requirement to report such impact to the site manager.

Detailed records should be kept of any contamination found. Should any suspected contaminated soils be identified, works should cease in the affected area, and the geoenvironmental engineer contacted to allow for appropriate assessment of the contamination. Examples of indicators of contamination include staining of soils, unusual colouration, odours, and filming on groundwater. Vigilance should also be maintained for potential asbestos containing materials (ACM).

7.6 Waste disposal

The development of the site could create soils that require disposal. Excess soils could be disposed of to a waste treatment or recycling facility or an appropriately licenced landfill. Under the Waste Regulations there are three main categories of waste: Inert, Non-Hazardous and Hazardous. The Inert category is a subgroup of Non-Hazardous.

Waste soils are first categorised as Hazardous or Non-Hazardous using the calculations in the EA document 'Guidance on the classification and assessment of waste' Technical Guidance WM3, Ver 1.2 GB, October 2021. Waste acceptance criteria (WAC) testing is then required on Hazardous waste soils to determine if they need any additional treatment before they can be received at a Hazardous waste landfill, or if they can be taken to a Non-Hazardous landfill which has cells to receive 'Stable Non-Reactive Hazardous' waste. WAC testing of Non-Hazardous soils is required to determine if it can be received at an Inert landfill. Non-Hazardous waste does not require WAC testing as there are no limits set for the various determinands. However, in reality, most landfills request WAC test results to ensure that the waste complies with their licence requirements.

The chemical analyses of the soils completed to date indicates that the soils could be classed as Non-Hazardous for waste disposal purposes. Based on the WAC analyses undertaken on three composite samples from across the site, the shallow soils can be further classified as Inert for waste disposal purposes.

Uncontaminated natural soils are typically classified as Inert for waste disposal purposes, unless they contain a high proportion of organic materials.

Additional Waste Acceptance Criteria (WAC) analyses should be carried out once soils destined for removal off site as waste have been clearly identified, to confirm if the inert classification is representative of the waste soils. Early liaison with the proposed receiving facility is recommended to confirm their requirements.

During the redevelopment programme a 'watching brief' should be maintained to identify any untoward or overtly contaminated soils intended for disposal off-site, which should be segregated and tested to confirm requirements for waste disposal.

Should any soils containing ACM be present on site, they are generally classified as Hazardous Waste and therefore will be subject to the consignment note procedures given in the Hazardous Waste Regulations. Asbestos containing materials will generally be considered as 'Stable Non-Reactive Hazardous' (SNRH) waste and will therefore need to be disposed of at a Hazardous landfill or a Non-Hazardous landfill which has separate cells to take SNRH waste. However, if the amount of asbestos present as fibres within the soils constitutes less than 0.1% by weight, and there are no visible fragments present, the soils can potentially be classed as not Hazardous for waste disposal, subject to agreement of the receiving facility.

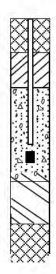
Copies of all waste transfer notes for waste soils removed off site should be kept on file by the appointed contractor for inspection at the end of the project, to confirm that all soils removed off-site have been done so using a licensed waste haulage company and have been disposed of to a suitably licensed waste disposal facility or recycling depot.

Further advice can also be sought from the local waste regulatory authority, who should also be able to offer advice on which landfills are available to accept the waste.

8. CONCLUSIONS

This report should not be regarded as the conclusion of the geotechnical or geoenvironmental involvement of the proposed scheme. It is recommended that a continuing overview of this aspect is maintained throughout the scheme.

Samples from the investigation will be retained for a period of three weeks from the date of this report, unless instructions to the contrary are received.

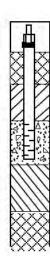

All recommendations made in this report need to be agreed with the Planning Department and Environmental Health Department at the Local Authority, before being undertaken.

INSTRUMENTATION DETAILS

LIST OF SYMBOLS

S	mbol	Description
-	IIIDUI	Description

Groundwater Monitoring


19 mm diameter standpipe piezometer installed through backfilled material or cement/bentonite grout upper seal

Standpipe piezometer installed through permeable sand of gravel filter

Depth of porous Casagrande piezometer tip shown in bold

Cement/bentonite grout lower seal

Backfilled material beneath installation

Gas Monitoring

Gas valve and protective vandal proof lockable cover installed at ground level over each position

Plain 50/25 mm diameter HDPE/PVC pipework installed through backfilled materials or cement/bentonite grout upper seal

Slotted or perforated pipework installed through permeable sand or gravel filter medium

Cement/bentonite grout lower seal

Backfilled material beneath installation

LABORATORY TEST RESULTS

LIST OF SYMBOLS

Symbol	Type of Test	Unit
	Classification Tests	
<425	Mass of oven dried soil passing 425 μm BS Test Sieve	%
W	Natural Water Content, oven dried method	%
w_{p}	Plastic Limit	%
<i>W</i> _L	Liquid Limit	%
I _p	Plasticity Index	%
LS NP	Linear Shrinkage	%
	Non-plastic Method of Preparation; N: Natural State, W: Wet Sieved	
Prep Temp	Drying Temperature	°C
Temp	Brying remperature	C
	Undrained Shear Strength	
Туре	Type of test and nominal diameter of test specimen	
	Ts - single point test on 100 mm nominal diameter Tm - multistage test on 100 mm nominal diameter	
	T38 - single point tests on 38 mm diameter specimens	
ρ	Bulk density of specimen	Mg/m ³
W	Water content of specimen after test	%
σ_3	Cell Pressure	kN/m ²
σ_1 - σ_3	Deviator Stress	kN/m²
C C	Apparent Undrained Cohesion	kN/m²
C	Apparent Gharamea concision	KI Y III
	Chemical Tests	
pH Value	pH Value, electrometric method	
Total	Total Sulphate as percentage of oven dried mass, expressed as SO ₄	%
2:1 Extract	Sulphate Content of 2:1 water:soil extract, expressed as SO ₄	g/litre
Groundwater	Sulphate content of groundwater, expressed as SO ₄	g/litre

e ati		rich, Suffolk		ber Doucy			and the second	ces / RSA	Date: 31/08/2022 - 0: Co-ords: E618640.00	The state of the s	
jec	t No. : 1	6118SI			Crew Na	- PUT			Drilling Equipment: D	ando 2000	
Bor	ehole N	umber		е Туре	-	Level		Logged		Page Numb	
				- 1	Diete		JMK	1:50	Sheet 1 of		
11			_			Depth (m)	Level (m)	Legend	Stratum Descrip	otion	
* * * *	Water Added =2050 I	0.50	D			0.60			Topsoil (Firm dark brown silty sa little subrounded-subangular fine and rare rootlets) Firm orange brown silty sandy C subrounded-subangular fine-coa (Lowestoft Formation)	e-coarse flint gravel	
		1.00	D					X-1-X- X-X-1-X	(concolor romator)		
*		1.50 - 1.95	ŲT			1.50			Orange brown silty clayey fine-coccasional subrounded-subangu	oarse SAND with	
* * *		2.00	D						gravel. (Lowestoft Formation)	nat inte-coarse init	
		2.50 - 2.95 2.50	B SPT	50 (50 for 12 for 10m		2.80		**************************************			
		3.00	D	101 1011	111)	2.00		× × ×	Very dense orange brown silty s subangular fine-coarse flint GRA (Lowestoft Formation)	andy subrounded- WEL	
		3.50	SPT	50 (2,38/50 for 75mm)							
		4.00	D)			X × X			
		4.50 SPT N=20 (1,4/4,5	1,5,5,6)			X X X	- becoming medium dense at approximately	4.50m			
						X					
		5.50	SPT	N=50 (1,3/50 for 275mm)	the first term of the second s		noc		becoming very dense at 5.50m approximately		
		6.00	D				6.00			Very dense orange brown slightl coarse SAND with occasional su subangular fine-coarse flint grav (Lowestoft Formation)	ubrounded-
		7.00 7.00	D SPT		50 (1,4/50 for 220mm)						
		8.00	D								
		8.50 SPT 50 (2,5/50 for 215mm)	0 for π)								
		9.00	D								
		10.00	D								
	Hole Diame		Casing th Base	Diameter Diameter	Depth To	p Depth B	Chiselling	ation	Tool Depth Top Depth Base	and Orientation Orient	

No groundwater encountered. 50mm diameter HDPE pipe installed to 4.00m. Pipework capped and protected with raised lockable cover.

			ber Doucy	Client: F	PO & WO J	Jolly Hold	lings Ltd		Date: 31/0	8/2022 - 01	/09/2022		
on: Ipsw	rich, Suffolk			Contrac Geotecl	tor: Boreho	ole Servi	ces / RSA		Co-ords: E	618640.00	N247220.0	00	
t No. : 1	6118SI				ame: NI				Drilling Eq	uipment: Da	ando 2000		
ehole N		Hole	: Туре		Level		Logged	d By		cale		Numbe	er
BH1									1	:50	_		
Water	Sampl	e and lı	n Situ Testir	ng	Depth	Level	Legend		Strati	ım Descrini	tion		
Strikes	Depth (m)	Туре			(m)	(m)	Logona			•			L
	11.00	D	N=50 (1,4/ 295mn 50 (2,5/5 165mn	50 for n) 0 for n)				coarse subang	SAND with o Jular fine-coal	ccasional sul se flint grave	brounded-		12
	15.00	ט			15.00				End of I	Borehole at 15	5.00m		1
													1
													1
													1
													2
	BH1 Water Strikes	BH1 Water Strikes Depth (m) 10.00 11.50 - 11.95 11.50 12.00 13.00 13.00 14.00	Sample and II	Sample and In Situ Testing Sample and In Situ Testing	Sample and In Situ Testing	Sample and In Situ Testing Depth (m) Type Results	Nater Strikes Sample and In Situ Testing Depth (m) Type Results (m) (m)	Sample and In Situ Testing Depth (m) Level (m) Legend	Sample and In Situ Testing Depth (m) Type Results Depth (m) Type Results Testing Testing	Sample and In Situ Testing Depth (m) Type Results Toology Toolog	Sample and In Situ Testing Depth (m) Type Results To N=46 (1.5/7,10,11.18) To N=46 (1.5/7,10,11.18) To N=50 (1.4/50 for 295mm) To Depth (m) Depth (m) Depth (m) Type Results To N=50 (1.4/50 for 295mm) To Depth (m) To Depth (m) To Depth (m) To Depth (m) Depth (m)	Sample and In Situ Testing Depth (m) Type Results Type Type Results Type Type	Sample and In Situ Testing Depth (m) Type Results Times Ti

Remarks

No groundwater encountered. 50mm diameter HDPE pipe installed to 4.00m. Pipework capped and protected with raised lockable cover.

Geotechnics Diject No.: 16118SI Crew Name: NI Drilling Equipment: Dando 2000	Lane				Client: PO & WO Jolly Holdings Ltd Contractor: Borehole Services / RSA					Date: 21/09/2022 - 22/09/2022			
Sorehole Number Hole Type Level Logged By Scale Page Number Shoet 1 Sample and in Situ Testing Depth (m) Type Results Depth (m) Type	ation: lpsw	rich, Suffolk			100		ole Servic	es / RSA					
Water Sample and In Situ Testing Depth (m) University Univers	ject No. : 1	6118SI			Crew N	ame: NI				Drilling Equipment: Da	ando 2000		
Water Sample and in Situ Testing Depth (m) Type Results Depth (m) Type		umber			-	Level			Ву		Page Number		
Strikes Depth (m) Type Results (m) (m) Legend Topsoil (Dark brown snet)	1- 1	BH2 CP			-		JMK		1:50	Sheet 1 of	<u>2</u>		
Mater Added	Strikes Depth (m) Type Res					Legend		Stratum Descrip	tion				
1.00		Depui (iii)	Турс	Nesu	13			3/3/3/3	Topso	il [Dark brown sandy]		t	
Very stiff very high strength light orange-brown and subtrounded-subangular fine-coarse chalk and flint gravel and rare robust by desiccated to approximately 1.00m								\$\frac{\pi_{\text{x}}}{\pi_{\text{x}}} \frac{\pi_{\text{x}}}{\pi_{\text{x}}} \frac{\pi_{\text{x}}}{\pi_{\tex	with a grave	little subrounded-subangul and rare rootlets and poss	lar fine-coarse flint		
Lowestoff Formation			5					<u> </u>	Very s light g subro	stiff very high strength light prey slightly sandy silty CLA unded-subangular fine-coal	Y with occasional		
2.50 SPT N=29 (1,3/5,7,7,10) 3.00 D 3.50 - 3.95 UT 4.00 D 4.50 SPT N=23 (1,1/3,5,6,9) 4.50 Medium dense orange-brown sitty fine-coarse SAND with occasional subrounded- subangular fine-coarse lint gravel, rare fine-medium gravel sized quartzite gravel and fine-medium gravel size pockets of storown silty sandy clay. (Lowestoft Formation) 5.50 - 5.95 UT 6.50 Very dense brown and grey sandy subrounded-subangular fine-coarse lint (GRAVEL with rare subrounded subangular fine-coarse lint (GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint (GRAVEL with rare subrounded medium gravel subrounded subangular fine-coarse lint (GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size quartities fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size quartities fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint GRAVEL with rare subrounded medium gravel size pockets of seminary fine coarse lint gravel fine	*	1.50 - 1.95	UT					<u>x-1-x</u> 2 x-2-x2	grave (Lowe	l and rare rootlets. estoft Formation)			
3.00 D 3.50 - 3.95 UT 4.00 D 4.50 SPT N=23 (1,1/3,5,6,9) 4.50 Medium dense orange-brown silty fine-coarse SAND with occasional subrounded-subangular fine-coarse fine-coarse find fine-medium gravel size pockets of soft brown silty sandy clay. (Lowestoff Formation) 5.50 - 5.95 UT 6.00 D 7.00 D 7.00 K 7.00 - 7.00 K 7.00 - 7.00 SPT 7.00 SPT 50 (2,14/50 for 225mm) 8.50 SPT 50 (5,34/50 for 55mm)		2.00	D					<u>*-</u> <u>-</u> - <u>-</u> - <u>-</u> * *					
3.50 - 3.95		2.50	SPT	N=29 (1,3/5	,7,7,10)			X-1-2* X-2-2 X-2-3					
4.00 D 4.50 SPT N=23 (1,1/3,5,6,9) 4.50 Medium dense orange-brown sity fine-coarse SAND with occasional subrounded-subangular fine-coarse flint gravel, rare fine-medium gravel sized quartzite gravel and fine-medium gravel size pockets of soft brown sitly sandy clay. (Lowestoft Formation) 5.50 - 5.95 UT 6.00 D 7.00 D 7.00 K 7.00 - 7.45 B 7.00 SPT 50 (2,14/50 for 225mm) 8.50 SPT 50 (5,34/50 for 55mm)		3.00	D	b				XX- XX XX X					
4.50 SPT N=23 (1,1/3,5,6,9) 4.50 Medium dense orange-brown silty fine-coarse SAND with occasional subrounded-subangular fine-coarse flint gravel, rare fine-medium gravel sized quartzite gravel and fine-medium gravel size pockets of soft brown silty sandy clay. (Lowestoft Formation) Containing more gravel with depth		3.50 - 3.95	UT					XX- XXX					
SAND with occasional subrounded-subangular fine-coarse flint gravel, rare fine-medium gravel sized quartzite gravel and fine-medium gravel sized quartzite gravel with depth Containing more gravel with depth		4.50 SPT N=23 (1,1/3,5,6,9)					- conta	nining no rootlets with de	pth				
5.00 D 5.50 - 5.95 UT 6.00 D Containing more gravel with depth Containing more gravel with depth with depth depth dep			3,5,6,9)	4.50			SAND	with occasional subrounder	ed-subangular				
6.00 D Containing more grave with depth		5.00	D						sized pocke	quartzite gravel and fine-mets of soft brown silty sandy	edium gravel size		
7.00 D 7.00 K 7.00 -7.45 B 7.00 SPT 50 (2,14/50 for 225mm) 8.50 SPT 50 (5,34/50 for 55mm)		5.50 - 5.95	UT	100									
7.00 D 7.00 K 7.00 - 7.45 B 7.00 SPT 50 (2,14/50 for 225mm) 8.50 SPT 50 (5,34/50 for 55mm)		6.00	D						L containing more gravel with depth				
7.00 D 7.00 K 7.00 - 7.45 B 7.00 SPT 50 (2,14/50 for 225mm) 8.00 D 8.50 SPT 50 (5,34/50 for 55mm) (Lowestoft Formation)						6.50			subar	igular fine-coarse flint GRA	VEL with rare		
8.50 SPT 50 (5,34/50 for 55mm)		7.00 7.00 - 7.45	K B	50 (2,14/5 225mi	50 for m)				(Lowe	estoft Formation)	e graver.		
55mm)		8.00	D										
9.00 D		8.50	SPT										
[[mki/4.20,1]		9.00	D										
10.00 D		10.00	D										
Hole Diameter Casing Diameter Chiselling Inclination and Orientation h Base Diameter Depth Base Diameter Depth Top Depth Base Duration Tool Depth Top Depth Base Inclination Orientation Or						1-							

No groundwater encountered. 50mm diameter HDPE pipe installed to 3.50m. Pipework capped and protected with raised lockable cover. Falling head soakage tests at 7.00m.

Projed Lane	t Name	: Land North	of Humb	per Doucy		PO & WO				Date: 21/09	9/2022 - 22	2/09/2022		
	on: Ipsw	vich, Suffolk			Contra	ctor: Boreh	ole Servi	ces / RSA						
Projed	t No. : 1	6118SI				lame: NI				Drilling Equ	ipment: D	ando 2000		
Bor	ehole N BH2			Type :P		Level		Logged JMK			ale 50	_	e Numb	
Well	Water	Sample	and In	Situ Testii	ng	Depth	Level	Legend		Stratu	m Descrip	_		
*****	Strikes	Depth (m) 10.00	Type	Resul		(m)	(m)	Logona	\/a.m.i.ala		·		al .	
		11.00 11.50 - 11.95 11.50 12.00	D B SPT	50 (3,8/5 165mr 50 (1,5/5 200mr	n) 0 for	10.50			subang subrou (Lowes Very de subrou with rai	ense brown an jular fine-coars nded fine-med stoft Formation ense orange-b nded-subangure subrounded stoft Formation	se flint GRA lium quartzi) rown slightl llar fine-coa fine-course	VEL with range te gravel. y silty very sanger the sang	e andy WEL	11 —
		13.00 13.00	D SPT	50 (5,15/5 150mr	50 for n)									13 -
		14.00	D											14 -
		14.50	SPT	50 (2,7/5 195mr				* * * *						-
		15.00	D			15.00				End of B	orehole at 1	5.UUM		16 — 17 — 18 —
					ı					1				20 -
Depth 15.0		Diameter Dep	th Base 15.00	Diameter Diameter 150	Depth 7	op Depth B		ation Hand	Tool d excavated	Depth Top	Depth Base	and Orientation Inclination	Orient	ation
10.0	- 1				1 5.00	1 1.20	1 01	110110		1		i .	i	

Remarks

ne	- 1111	Land North	of Hum	ber Doucy		PO & WO . ctor: Boreh hnics			Da	te: 26/09/2022 - 2	27/09/2022
ojec	t No. : 1	6118SI			Crew N	ame: NI				ling Equipment: [
Bor	ehole No BH3	umber		Type CP		Level		Logged JMK	Ву	Scale 1:50	Page Numb Sheet 1 of
ell	Water	Sample		n Situ Testi	ng	Depth	Level	Legend		Stratum Descri	
	Strikes Water	Depth (m)	Type	Resu	Its	(m)	(m)	g	Topsoil [San		
	Added =1800 I		Ы			0.40	1-0				
		0.50	D			1,120			with occasio	nal subrounded-su	silty very sandy clay bangular fine-
		1.00	D			0.75		X	fragments a	gravel, rare fine gr nd rootlets.	
***		1.00						XX XX	brown slight	y high strength ora ly sandy silty CLAY	with occasional
*		1.50 - 1.95	UT					* - X - X	gravel, rare	pockets of black sil	arse chalk and flint t.
								X - X - X	(Lowestoft F	ormation)	
		2.00	D					XX-	- possibly de	esiccated to appro	oximately 2.00m
4,		2.50	SPT	N=22 (1,1/	3.5.6.8)						
			3.4					<u> </u>			
		3.00	D					X X X			
* * * * *		600 600	1					XX-			
		3.50 - 3.95	UT					<u> </u>			
	4.00 D							X-X-X			
	4.00 D 4.50 SPT							<u> </u>			
			SPT	N=23 (1,1/4	4,5,6,8)			X X X			
			E								
		5.00	D					Z-X-Z			
		5.50 - 5.95	UT					X X X	hoooming	andukiani aandi	, from
			-			1000			approximate	sandy/very sandy ly 5.50m	rion
		6.00 6.00	D K			5.95			Very dense	orange-brown sligh -subangular fine-co	tly silty sandy
		,						X X X		prounded-rounded	
								x	(Lowestoft F	ormation)	
		7.00	D					X X X			
		7.00 - 7.45 7.00	SPT	50 (1,3/5				× × ×			
				205mi	m)			x × x			
		8.00	D					× × × ×			
		0.00						× × × .			
		8.50	SPT	50 (2,5/5 190mi				××××			
		1.00		190111	11)			x, ×, x, _x ,			
		9.00	D					×			
								x × × *			
								× × × ×			
		10.00	D			4.00		X. X. V.			
oth	Hole Diame		Casing th Base	Diameter Diameter	Depth To	op Depth B	Chiselling ase Dura	ation	Tool De	Inclinatio	n and Orientation Inclination Orien
15.0			15.00	150	0.00	1.20		:00			

No groundwater encountered. 50mm diameter HDPE pipe installed to 3.50m. Pipework capped and protected with raised lockable cover. Falling head soakage tests at 6.00m.

RSA G	EOTECK	INICS LTD			P	ercu	ıssi	on [Drill	ling Log		
	t Name	: Land North c	of Humb	per Doucy	Client:	PO & WO	Jolly Hold	ings Ltd		Date: 26/09/2022 - 27/	/09/2022	
<u>Lane</u> Locati	on: Ipsv	vich, Suffolk				ctor: Boreh	ole Servi	es / RSA				
	t No. : 1				Geotec	innics Iame: NI				Drilling Equipment: Da	ando 2000	
	ehole N		Hole	Туре		Level		Logged	Ву	Scale	Page Number	er
	внз		С					JMK		1:50	Sheet 2 of 2	
Well	Water Strikes	Sample	and In	Situ Testin	ng	Depth	Level	Legend		Stratum Descript	ion	
	Strikes	Depth (m) 10.00	Type SPT	Result 52 (1,6/52		(m)	(m)	*******	Ven, de	ense orange-brown slightly		
		11.00	D	190mn	n)				subrou with rai quartzi	inded-subangular fine-coar re subrounded-rounded fin te gravel. stoft Formation)	se flint GRAVEL	11 -
		11.50	SPT	38 (2,12/3 95mm								-
		12.00	D			12.00		X X X X X X X X X X X X X X X X X X X	SAND coarse	ense orange-brown slightly with rare subrounded-suba flint gravel. stoft Formation)	silty fine-coarse angular fine-	12 -
		13.00 13.00 - 13.45 13.00	D B SPT	41 (2,9/4 ⁻ 105mn								13
		14.00	D						- contai 14.00m	ining more gravel at app	roximately	14 -
		14.50	SPT	40 (4,14/4 85mm		45.00						-
		15.00	D			15.00				End of Borehole at 15	.00m	15 -
												16 -
												17 -
												18 -
												19 -
												20 -

Hole Diameter

Depth Base Diameter

15.00 Casing Diameter
Depth Base Diame
15.00 150 Diameter 150 Diameter 150 Tool Depth Top Depth Base Inclination Orientation

Remarks

No groundwater encountered. 50mm diameter HDPE pipe installed to 3.50m. Pipework capped and protected with raised lockable cover. Falling head soakage tests at 6.00m.

Inclination and Orientation

RSA G	E OTECK	MICS LTD			Р	ercı	ussi	on [Orill	ing l	_og			
Projed Lane	t Name	: Land No	orth of Hum	ber Doucy	1	PO & WO .	-	_		Date: 10/0	8/2022			
Locati	on: Ipsv	vich, Suffe	olk		Contrac Geotech	tor: Boreh	ole Servi	ces / RSA			618360.00			
Projed	t No. : 1	16118SI				ame: MR &	ß LG			Drilling Eq sampler	uipment: Pe	ercussive v	vindow	
Bor	ehole N WS1			Type VS		Level		Logged MR	Ву	S	cale :25	_	e Numbe	
Well	Water Strikes			n Situ Testi		Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
	Strikes	Depth (0.20 0.50 0.90 1.40 2.40	D D D	Resu	lts	0.40	(m)		mediun subrour rootlets Very sti with so gravel a mediun (Lowes Very sti slightly subrour angular (Lowes - colour - col	(Dark-brown n-coarse san nded fine-coarse san nded fine-coarse sand plant de iff dark-brown me angular-sand occasion in chalk grave toft Formatio iff mottled gre sandy CLAY nded fine-coars-subangular toft Formatio	slightly silty d with some arrse flint grave bris) n slightly silty subrounded fi al angular-su- el and occasion bey and brown with much a arse chalk gra- fine-medium n)	very clayey angular- vel and occa very sandy ine-coarse fl ubangular fir onal rootlets a slightly silty ngular- avel and sor flint gravel	CLAY int ne-	1
	Hole Diam.	eter	Casing	Diameter		2.80	Chiselling			End of	Borehole at 2	and Orientatio		4
Depth		Diameter	Depth Base	Diameter	Depth To	p Depth B		ation	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Rema	arks		1	<u> </u>	1					1	1			

No collapse. No groundwater encountered. Window sample refused at 2.80m

RSA G	E OTECK	NICS LTD			P	ercu	ıssi	on [Drill	ing L	_og				
Projed Lane	t Name	: Land No	rth of Hum	ber Doucy	Client: P	O & WO .	Jolly Hold	ings Ltd		Date: 10/0	8/2022				
	on: Ipsv	ich, Suffo	olk		Contract Geotech	tor: Boreh	ole Servic	es / RSA		Co-ords: E	618460.00	N247	200.0	00	
Projec	t No. : 1	6118SI				ame: MR &	k LG				uipment: Pe	ercuss	ive w	indow	
	ehole N	umber		e Type		Level		Logged	Ву		cale		_	Numb	1
	WS2			NS n Situ Testii	na	Donth	Lovol	MR		1	:25		Sne	et 1 of	
Well	Strikes			Resul		(m)	(m)	Legend		Stratu	ım Descrip	tion			
Well	Water Strikes	Depth (0.20 0.50 0.90 1.70 1.80 2.50 2.90	D D D	HVP=14	ts	Depth (m) 0.40 0.70 2.40 3.10	Level (m)	Legend The state of the state	mediun subroul rootlets Subsoil sandy of coarse fine gra Very still slightly angular some a and occorange (Lowes - rootlet) - sand p	(Dark-brown n-coarse sand inded fine-coarse sand plant de (Very stiff -hælay with some flint gravel ar vel sized briot fine streng silty slightly s-subrounded ngular-subancasional rootle brown mediu toft Formations found between strength for the cockets found between strength for the cockets found silty slightly sinded fine-coartoft Formation	slightly silty d with some rse flint grave bris) and dark-brove angular-sund occasionate k fragments the mottled brish and y CLAY fine-coarse gular fine-coarse sand occasionate when the sand occasionate and occasionate sand oc	very cla angular vel and wn sligh bround I rootle own ar with mu chalk g arse fli sional nd. 0.90m	nediul	e- dirare y and vel tts of	2
	Holo Di	otor	Caste	Diameter	1		Chicallin			T	India-4-	and O=!	atatic -		5 —
Depth	Hole Diame Base [eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling ase Dura	ition	Tool	Depth Top	Inclination Depth Base	and Oriei Inclina		Orient	ation
Rema	arks		<u> </u>	I	1					1	<u> </u>				

No collapse. No groundwater encountered. Poor sample recovery between 1.00-1.55m. Window sample refused at 3.10m.

RSA G	L OTECK	NICS LTD			Pe	ercu	ssi	on	Dril	ling l	_og			
Project Lane	t Name	: Land No	rth of Hum		Client: PC		-	_		Date: 10/0	8/2022			
	on: Ipsw	vich, Suffo	lk		Contracto Geotechn		le Servic	es / R	SA	Co-ords: E	618560.00	N247240.0	00	
Projec	t No. : 1	6118SI			Crew Nan		LG			Drilling Eq	uipment: P	ercussive w	vindow	
Bor	ehole N			е Туре	L	.evel			ed By	S	cale	_	e Numbe	
	WS3			WS				N	R	1	:25	She	et 1 of 1	1
Well	Water Strikes	Depth (r	•	n Situ Testin Result		Depth (m)	Level (m)	Leger	d	Strat	um Descrip	otion		
		0.20	D	result		0.40			mediu subro	il (Dark-brown m-coarse san unded fine-coa ts and plant de	d with some arse flint grav	angular-	sional	-
		0.50	D			0.75		X - X - X - X - X - X - X - X - X - X -	with s gravel mediu (Lowe	etiff dark-brown ome angular-soland occasion om chalk grave estoft Formatio	subrounded f al angular-su el and occasi n)	ine-coarse fli ubangular fin onal rootlets	int ie-	-
		0.90	D						with so and cl and bo subroom (Lowe	e-brown sligh ome angular-s nalk gravel and rown slightly s unded fine-me estoft Formation oockets foun	subrounded for the comment of the co	ine-coarse fli pockets of g angular- gravel.	int rey	1 —
		1.40	D						1.90-2	. <u>20m</u>				
		1.90	D											2 —
		2.40	D			2.65			angula some	orown slightly ar-subangular angular-subro	fine-coarse f	flint gravel ar	nd	
		2.90	D			3.00		X X	gravel (Lowe	stoft Formatio	n) Borehole at 3	3.00m		3 —
														4 —
														- - - - - - - -
	Holo Di	nter. T	Control	Diameter			Chicalline				Jackin-Mark	and Orionati		5 —
Depth	Hole Diamo		Casing Depth Base	Diameter Diameter	Depth Top	Depth Bas	Chiselling se Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ation

Remarks

No collapse. No groundwater encountered. Poor sample recovery between 2.00-3.00m. Unable to drill below 3.00m due to broken tube.

е	Land North	oi numb	Clien	t: PO & WO	Jolly Holo	lings Ltd		Date: 10/08/2022	
	vich, Suffolk			ractor: Boreh echnics	ole Servi	ces / RSA		Co-ords: E618500.00 N	1246840.00
ect No. : 1	6118SI			Name: MR	& LG			Drilling Equipment: Per	cussive window
orehole N WS4	Charles 15 1	Hole W		Level		Logged	Ву	sampler Scale 1:25	Page Number Sheet 1 of 1
Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description	on
	Depth (m) 0.20	Type D	Results		V-7		sandy	oil (Very stiff dark-brown slight or clay with some angular-suba e flint gravel and occasional p	angular fine-
	0.70	D		0.55			sandy coars subar fragm browr (Lowe - one f	stiff high strength brown slight or CLAY with much angular-sule e chalk gravel and occasiona ngular fine gravel to cobble size ents and occasional pockets of organization of the comments of the cobble approximately at base of first tube (1m)	brounded fine- I angular- zed flint of orange-
	1.80 1.80	D	HVP=140.0						
	2.30 2.30	D	HVP=140.0		K		- sand	pockets occurred below 2	2.50m depth
	2.80 2.80	D	HVP=140.0		13	X X X X X X X X X X X X X X X X X X X			
	3.40 3.40	D	HVP=108.0	3.35	1		chalk coars orang	stiff high strength brown slight with much angular-subround gravel and some angular-sub e flint gravel and occasional p e-brown medium-coarse sand	led fine-coarse bangular fine- bockets of
***	3.90 3.90	D	HVP=133.0	4.00		<u> </u>	(Lowe	estoft Formation) is not as stiff as layer abo End of Borehole at 4.0	
Hole Diam h Base [[Casing D		h Top Depth B	Chiselling	ation	Tool	Inclination and Depth Top Depth Base 1	d Orientation

No collapse. No groundwater encountered. Poor sample recovery between 1.00-1.50m. 25mm pipe was installed to 4.00m. Pipework capped and protected with a raised lockable cover.

ie		of Humbe	or Boucy		PO & WO	A STATE OF			Date: 10/08/2022		
cation: lpsw	rich, Suffolk			Contra	ctor: Boreh	ole Servi	ces / RSA		Co-ords: E618760.00		
ject No. : 1	6118SI			Crew N	Name: MR &	& LG			Drilling Equipment: Po sampler	ercussive window	
Borehole Nu WS5	umber	Hole T			Level		Logged MR	Ву	Scale 1:25	Page Numb Sheet 1 of	
Water Strikes		-	Situ Testir		Depth (m)	Level (m)	Legend		Stratum Descrip	tion	
Suikes	Depth (m)	Туре	Resul	ts	(III)	(III)	\(\langle\)	Tops	oil (Very stiff dark-brown slig	ahtly silty very	+
	0.30	D			0.50			coars	y clay with some angular-sub se flint gravel and occasional ible Made Ground (Stiff dar	bangular fine- al plant debris)	
	0.80	D						silty v subro angul occas	very sandy clay with some a bunded fine-coarse flint grav lar-subrounded fine-mediun sional rootlets and rare fine nents)	ingular- vel and some n chalk gravel and	
	1.40	D			1.30			slight angu some (Low	stiff high strength mottled b dy silty slightly sandy CLAY lar-subrounded fine-coarse angular-subangular fine-m estoft Formation)	with much chalk gravel and edium flint gravel.	-
	1.80 1.90	D	HVP=14	10.0			XX XX XX XX X		ur becomes more predor nhout layer	minantly grey	
	2.30 2.40	D	HVP=14	10.0	0.70						
	2.80 2.90	D	HVP=14	10.0	2.70		X X X X X X X X X X X X X X X X X X X	with r grave flint g brown	stiff dark-grey slightly silty s much angular-subrounded f el and some angular-subang gravel and occasional pocke n medium-coarse sand. estoft Formation)	ine-coarse chalk gular fine-medium	
	3.30 3.40	D	HVP=14	10.0			x x - x - x - x - x - x - x - x -				
***************************************	3.80 3.90	D	HVP=13	36.0	4.00		<u>*</u>		End of Borehole at 4	1.00m	-
Hole Diame	ter	Casing Dia	ameter			Chiselling			Inclination	and Orientation	
		oth Base	Diameter Diameter	Depth	Top Depth B		ation	Tool	Depth Top Depth Base	Inclination Orient	tati

No collapse. No groundwater encountered. 25mm pipe was installed to 4.00m. Pipework capped and protected with a raised lockable cover.

RSA G	PEOTECH	inics Ltd				Percu	ıssi	or	l [Orilli	ing L	_og			
	ct Name	: Land No	rth of H	umber Douc	/ Clier	nt: PO & WO 、	Jolly Hold	lings l	Ltd		Date: 10/0	8/2022			
<u>Lane</u> Locat	ion: Ipsv	vich, Suffo	olk			tractor: Boreho technics	ole Servi	ces / F	RSA		Co-ords: E	618840.00	N246520.0	00	
Proje	ct No. : '	16118SI				v Name: MR &	k LG				Drilling Eq sampler	uipment: Pe	ercussive w	vindow	
Воі	rehole N		Н	lole Type		Level		_	gged	Ву	S	cale		e Number	
	WS6		mala an	WS d In Situ Te	tina				MR		1	:25	She	et 1 of 1	
Well	Water Strikes				sults	Depth (m)	Level (m)	Leg	end		Strat	um Descrip	tion		
		0.20	Г)		0.45				coarse s gravel a	sand with so nd occasion	slightly silty me angular-s al rootlets) ilty very sand	subangular fl	int	
		0.50				0.70		*		some ar and occ (Lowest Very stif sandy C coarse of fine-coa (Lowest	ngular-subro asional rootl oft Formatio f high streng CLAY with muchalk gravel irse flint grav oft Formatio mount of fli	unded fine-c ets. n) yth brown slig uch angular-s and some ar rel.	oarse flint gr ghtly silty slig subrounded ngular-suban	ravel	1 —
		1.70 1.80 2.30 2.30		HVP	=140.0 =140.0			* - * - * - * - * - * - * - * - * - * -							2 —
		2.80 2.80	С		=136.0	2.90		X		- evidend tube		flint cobble Borehole at 2		3m	3 —
															4 —
Depth	Hole Diam	eter Diameter	Ca: Depth Ba	sing Diameter ise Diamete	Dep	oth Top Depth Ba	Chiselling ase Dura	ation		Tool	Depth Top	Inclination Depth Base	and Orientation		5 —

No collapse. No groundwater encountered. Initial hole refused at 1.10m, hole moved 1m away from hedge and redrilled. Boulder clay came in at 0.90m on initial hole, other layers the same in both. Poor sample recovery between 1.00-1.55m. Window sample refused at 2.90m

RSA G	neo teck	NICS LTD			Р	ercu	ıssi	ion	D	rilliı	ng L	_og			
	ct Name	: Land North	h of Hum	ber Doucy	Client: F	PO & WO .	Jolly Hol	dings Ltd			Date: 11/0	8/2022			
Lane Locati	ion: Ipsv	vich, Suffolk	[Contrac	tor: Boreh	-	_		C	Co-ords: E	618860.00	N246420.0	00	
Proied	 ct No. : 1	16118SI			Geotecl Crew N	nnics ame: MR &	k LG					uipment: Po	ercussive w	indow	
	rehole N		Hole	Туре	0.0	Level		Logg	ed B		ampler S	cale	Page	Numbe	er
	WS7		V	vs					IR_		1	:25	_	et 1 of 1	
Well	Water Strikes			n Situ Testin		Depth (m)	Level (m)	Leger	nd		Strat	um Descrip	tion		
	Otrikoo	Depth (m)) Type	Result	ts	(111)	(111)			Topsoil (D	ark-brown	slightly silty	clayey medi	um-	
		0.20	D			0.40						me angular-s al rootlets)	subangular fl	int	- - - -
		0.50	D			0.40		× × × × × × × × × × × × × × × × × × ×	× - × × × ×	some ang	n slightly s Jular-subro Sional rootl t Formatio		dy CLAY with oarse flint gr	ı avel	-
		0.90	D			0.80		X X X X X X X X X X X X X X X X X X X		sandy CL coarse ch fine-media	AY with mi alk gravel		subrounded	fine-	1 -
		1.30 1.40	D	HVP=14	0.0			× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	`		,			- - - - -
		1.80 1.90	D	HVP=14	0.0			× × × × × × × × × × × × × × × × × × ×	× – × × × × × × × × × × × × × × × × × ×						2 -
		2.30 2.40	D	HVP=14	0.0				× ¬ × × × × × × × × × × × × × × × × × ×						- - - - - - - -
		2.95	D			2.85			— ×-	with occas brown cla coarse ch	sional pock y and muc alk gravel	silty very clay kets of soft m h angular-su and occasion lium flint gra	nottled grey a brounded fir nal angular-	and	3 -
		3.30	D			3.45			*** *** ***	(Lowestof	t Formatio		and brown sl	ightly	-
		3.70 3.80	D	HVP=95	5.0	4.00		× × × × × × × × × × × × × × × × × × ×	× × × ×	subrounde occasiona gravel. (Lowestof	ed fine-coa al angular-s t Formatio centration	arse chalk grasubangular fi n) n of flint gra	avel and ne-coarse fli	nt	4 —
									182	JOHN GOIT S		n Borehole at 4	J.00m		-
							GI :								5 —
Depth	Hole Diam Base [Casing epth Base	Diameter Diameter	Depth To	pp Depth Ba	Chiselling ase Dur	ration	Т	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ation

Remarks

No collapse. No groundwater encountered.

Contractor: Borehole Services / RSA Geotechnics Project No.: 16118SI Borehole Number Hole Type Contractor: Borehole Services / RSA Geotechnics Crew Name: MR & LG Drilling Equipment: Percussiv sampler Level Logged By Scale P	-	ct Name	: Land No	rth of Hun	nber Doucy	Client	: PO & WO	Jolly Ho	ldinas Ltd		Date: 11/08/202	22	
Cookening Cookening Crew Name: MR & LG Drilling Equipment: Percussive sampler Scale P Sc		ion: Insv	rich Suffo	lk		Contra	actor: Boreh			1			3480 00
Borehole Number WS8								P I C					
Well Water Sample and in Situ Testing Depth (m) Eeyel Complete Strikes Sample and in Situ Testing Depth (m) Eeyel (m) Stratum Description Stratum Description Stratum Description Topsoil (Dark-brown slightly silty carey and occasional rociletes Complete Stratum Description Topsoil (Dark-brown slightly silty very same) Complete Stratum Description Topsoil (Dark-brown slightly silty very same) Stratum Description Topsoil (Dark-brown slightly silty very same) Stratum Description Topsoil (Dark-brown slightly silty very same) Stratum Description Topsoil (Dark-brown slightly silty very some angular-subrome angular-sub				Hol	e Type	Crewi		x LG	Logged	l Bv			Page Numl
Strikes Depth (m) Type Results (m) (m) Legend Stratum Description	50.						2070.			-			Sheet 1 of
Strikes Depth (m) Type Results (m) (m) Topsoil (Dark-brown slightly slily clayey m coarse sand with some angular-subangul gravel and occasional rootlets) 0.20 D	Vall	1	Sam	ple and	n Situ Testi	ng	Depth	Leve	Lagand		Stratum C	Description	
coarse sand with some angular-subangul gravel and occasional rootlets) 0.50 D 0.50 D 0.50 D 0.75 Very stiff from slightly silty very sandy CLAY some angular-subrounded fine-coarse filir and chalk gravel and occasional rootlets. (Lowestoff Formation) 1.20 HVP=140.0 Lost transported to the coarse filir and chalk gravel and occasional rootlets. (Lowestoff Formation) 1.20 HVP=140.0 Very stiff from slightly silty sandy with some angular-subrounded coarse chalk gravel and some angular-subrounded coarse chalk gravel and some angular-subrounded coarse chalk gravel and some angular-subrounded fine-coarse filir filir gravel. (Lowestoff Formation) 1.80 HVP=118.0 Lost transport filir gravel bether transported to the coarse sand and some angular-subrounded fine-medium filir and chalk gravel and some angular-subrounded fine-medium filir gravel. (Lowestoff Formation) 2.65 Firm high strength brown slightly silty very subrounded fine-medium filir dat chalk gravel and some angular-subrounded fine-medium filir gravel. (Lowestoff Formation) 2.65 Stiff motted gravel and some angular-subrounded fine-medium filir gravel. (Lowestoff Formation) 3.10 CLAY with much angular-subrounded fine-medium filir gravel. (Lowestoff Formation) 5.50 Stiff price gravel and some angular-subrounded fine-medium filir gravel. (Lowestoff Formation) 3.40 D Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and filir gravel. (Lowestoff Formation)	VEII	Strikes	Depth (r	n) Type	Resu	Its	(m)	(m)	Legend				
and occasional rootlets. (Lowestoft Formation) 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.07 1.07 1.07 1.08 1.09 1.00							0.40			coarse gravel	e sand with some an and occasional roo prown slightly silty v	ngular-subang otlets) very sandy CL	gular flint AY with
1.05 HVP=140.0 HVP=140.0 HVP=140.0 1.40 D 1.40 D HVP=118.0 1.80 1.90 D HVP=118.0 1.90 D HVP=117.0 2.25 Firm high strength brown slightly silty ven CLAY with some pockets of orange-brown englur-subrounded fine-medium flint and chalk g (Lowestoff Formation) 2.65 2.90 D 3.10 HVP=112.0 3.55 HVP=112.0 3.55 Stiff motified gray and brown slightly silty ven CLAY with much angular-subrounded fine-medium flint and between chalk gravel. (Lowestoff Formation) Stiff high strength brown slightly silty ven CLAY with much angular-subrounded fine-medium flint gravel. (Lowestoff Formation) Stiff high strength brown slightly silty ven CLAY with much angular-subrounded fine-medium flint gravel. (Lowestoff Formation) Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and flint gravel. (Lowestoff Formation) Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and flint gravel. (Lowestoff Formation)							0.75		× × × × × × × × × × × × × × × × × × ×	very s with so	ccasional rootlets. stoft Formation) tiff brown slightly sil ome angular-suban nalk gravel and occa	ilty slightly san	ndy CLAY dium flint
2.40 D 2.50 HVP=117.0 2.65 Firm high strength brown slightly silty ven CLAY with some pockets of orange-brown medium-coarse sand and some angular-subrounded fine-medium flint and chalk g (Lowestoft Formation) 2.90 D 3.10 3.40 D 3.50 HVP=112.0 3.50 Stiff mottled grey and brown slightly silty silty send with some angular-subrounded fine-medium flint gravel. (Lowestoft Formation) - pocket of orange-brown sand between 2.80-2.95 m Soft brown slightly silty very sandy CLAY some angular-subrounded fine-medium flint gravel. (Lowestoft Formation) Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and flint gravel. (Lowestoft Formation)				D	HVP=1	40.0	1.05		X X X	Very s sandy coarse fine-co (Lowe	tiff high strength bro CLAY with much are chalk gravel and s parse flint gravel. stoft Formation) concentration of i	ngular-subrou some angular-	nded fine- subangular
2.40 2.50 HVP=117.0 2.65 HVP=117.0 2.65 And D 3.50 HVP=112.0 3.70 And D 3.70 HVP=112.0 And D 3.70 HVP=112.0 And D 3.70 HVP=112.0 And D 3.70 HVP=112.0 And D 3.70 And D 3.70 HVP=112.0 And D 3.70 And D 3.70 And D 3.70 HVP=112.0 And D 3.70 And D 4.70 And D 4.70				D	HVP=1	18.0			X X X X X X X X X X X X X X X X X X X	**************************************			
2.90 D 3.10 3.10 3.10 CLAY with much angular-subrounded fine chalk gravel and some angular-subangular medium flint gravel. (Lowestoft Formation) - pocket of orange-brown sand between 2.80-2.95m Soft brown slightly silty very sandy CLAY some angular-subrounded fine-medium flint gravel. (Lowestoft Formation) Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and flint gravel. (Lowestoft Formation)				D	HVP=1	17.0			X X X X X X X X X X X X X X X X X X X	CLAY mediu subrou (Lowe	with some pockets m-coarse sand and unded fine-medium stoft Formation)	of orange-bro I some angula flint and chalk	own ir- k gravel.
3.40 D 3.50 HVP=112.0 3.55 Chalk gravel. (Lowestoft Formation) Stiff high strength brown slightly silty sand with some angular-subrounded fine-coars and flint gravel. (Lowestoft Formation)			2.90	D			3.10		X X X	chalk (mediu (Lowe) - pocke 2.80-2.	gravel and some an m flint gravel. stoft Formation) et of orange-brow 95m	ngular-subang ngular-subang ngular-subang	ular fine- reen
and flint gravel. (Lowestoft Formation)				D	HVP=1	12.0	3.55		× × × × × × × × × × × × × × × × × × ×	chalk (Lowe	gravel. stoft Formation) gh strength brown s	slightly silty sa	andy CLAY
End of Borehole at 4.00m			3.90	D			4.00		× × × × × × × × × × × × × × × × × × ×	and flii	nt gravel. stoft Formation)		arse cnalk
			3.90	D			4.00			and flii	nt gravel. stoft Formation)		arse chalk

Remarks

No collapse. No groundwater encountered.

RSA GEOTEGHINGS LTD Project Name: Land North of Humber Doucy					Percussion Drill					ing L	_og			
Projed Lane	ct Name	: Land No	orth of Hu	mber Doucy	Client: F	O & WO J	lolly Hold	ings Ltd		Date: 11/0	8/2022			
	ion: Ipsw	vich, Suffo	olk		Contract	tor: Boreho	ole Servi	ces / RSA		Co-ords: E	619140.00	N246440.	00	
Projed	ct No. : 1	6118SI				ame: MR 8	k LG			Drilling Eq sampler	uipment: Po	ercussive v	vindow	
Bor	ehole N		Н	ole Type		Level		Logged	Ву	S	cale	-	Numbe	
	WS9 Water		nnle and	WS I In Situ Testi	na	Depth	Level	MR		1	:25	Sne	et 1 of 1	
Well	Strikes	Depth ((m)	(m)	Legend		Strat	um Descrip	otion		
	Strikes	0.20 0.50 0.90 1.30 1.50	m) Typ D		25.0	0.40 0.70 0.95	(m)		Firm-sc some a chalk g (Lowes Signs (Lowes Signs Coarse fine-coa (Lowes Coarse fine-coa (Lowes Signs Coarse Fine-coa (Lowes Fine-coa	(Dark-brown n-coarse sand plant de and plant de fine-coarse sand plant de fort brown slight gravel and occ toft Formation own slightly sonal angular-sravel. toft Formation of lamination of lamination of lamination are flint gravel toft Formation chalk gravel gravel from the first gravel toft formation amount of flint gravel toft formation amount of flint gravel g	slightly silty d with some are flint gravebris) htty silty very gular fine-occasional rootin) subangular fine-in present the subangular fine in present the subangular-stand some are el.	slightly clayer angular-vel and occasive sandy CLAY parse flint an lets. sandy CLAY inne-coarse fling the substitution of the	with d with nt and ayer hitly fine-	1
		2.30	D			2.90				End of	Borehole at 2	2.90m		
Dorth	Hole Diam			ng Diameter			Chiselling		Total	Duth Tree		and Orientation		4 5
Depth		Diameter	Depth Bas	se Diameter	Depth To	p Depth Ba	ase Dura	ition	Tool	Depth Top	Depth Base	Inclination	Orienta	ation

No collapse. No groundwater encountered. Window sampler refused at 2.90m, tube went off line significantly. Poor sample recovery between 2.00-2.40m

rsa geottechnics ltd						Percu	ıssi	on [Orill	ing Log				
Projec Lane	ct Name	: Land No	rth of Hui	mber Doucy	Client:	PO & WO	Jolly Hold	lings Ltd		Date: 11/08/2022				
	ion: Ipsw	vich, Suffo	olk		Contra	ctor: Boreh	ole Servi	ces / RSA		Co-ords: E619140.00	N246340.00)		
Projed	ct No. : 1	6118SI				Name: MR &	k LG			Drilling Equipment: Pe sampler	ercussive wir	ndow		
Bor	ehole N WS10			le Type WS		Level		Logged MR	Ву	Scale 1:25	1	Numbe t 1 of 1		
Well	Water Strikes			In Situ Testi		Depth (m)	Level (m)	Legend		Stratum Descript	tion			
	Ottikes	Depth (0.20	m) Type	e Resu	lts	0.45	(111)		mediun subrou rootlets	(Dark-brown slightly silty s n-coarse sand with some a nded fine-coarse flint grave and plant debris)	angular- el and occasio	onal		
	0.50 D					0.75			SAND flint gra (Lowes	slightly silty very clayey me with some angular-subang wel and occasional rootlets toft Formation) slightly silty very clayey me with some angular-subang	gular fine-coarse is. ledium-coarse			
	0.90 D					1.25			flint gra (Lowes	SAND with some angular-subangular fine-coarse flint gravel and rare rootlets. (Lowestoft Formation) Firm high strength brown slightly silty CLAY with				
		1.40 1.40	D	HVP=7	9.0	4-75			some a and rar (Lowes	en strength blown signify ingular-subangular fine-me e angular-subangular fine toft Formation) of lamination found thro	edium flint gra chalk gravel.	vel	- - - - -	
		1.90 1.90	D	HVP=8	8.0	1.75 2.25			CLAY v flint and brown i (Lowes - sand p	gh strength brown slightly with some angular-subangud chalk gravel and rare poor medium-coarse sand. toft Formation) pockets found throughou	ular fine-coars ckets of orang ut layer	se e-	2 —	
		2.40 2.40	D	HVP=6	8.0	2.23			silty slig subrou angulai	iff medium to high strength ghtly sandy CLAY with much nded fine-coarse chalk grar-subangular fine-coarse fli toft Formation)	ch angular- avel and some		- - - - - - - - -	
		2.90 2.90	D	HVP=7	9.0				- layer g 3.00-4.0	gets progressively stiffer 20m	r between		3 -	
		3.40 3.50	D	HVP=1	38.0								- - - - - - - -	
		3.90	D			4.00				End of Borehole at 4	.00m		4	
Depth	Hole Diamo	eter Diameter	Casin Depth Base	ng Diameter	Depth -	Top Depth Ba	Chiselling ase Dura	ation	Tool	Inclination a	and Orientation	Oriental	5 —	
Rema		ott	Zopui Dast	Diameter	Sopul	ор ориго	Dulc		1001	ээриг гэр	and a second	Cheffe		

No collapse. No groundwater encountered.

rsa geotechnics lid	
---------------------	--

Trial Pit Log

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 16/08/2022

Location: Ipswich, Suffolk

Loca	tion Number TP1	L	ocation Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Number Sheet 1 of 1
Nater	Sample a	and In S	Situ Testing	Depth	Level	Legend		Stratum Description	
trikes	Depth (m)	Туре	Results	(m)	(m)	Zogoria	Tamasii	- Caratam Booonpaon	
	0.15	D		0.35		X-2X-	Very stiff-hard dry with rootlets and o (Lowestoft Forma	blocky red brown very sa occasional fine-coarse ch tion)	andy silty CLAY alk and flint gravel.
	0.70	D		0.85		× × ×	Voru etiff bord dru	blooky grov brown you	sandu ailtu CLAV
	1.00	D				8 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	with frequent fine-	blocky grey brown very s coarse chalk gravel and and chalk and flint cobbl tion)	some rootlets, fine-
	1.50	D		1.70					
	2.00	D		1.70		X X X X X X X X X X X X X X X X X X X	Loose wet orange chalk gravel (Lowestoft Forma	brown sandy SILT/CLAY	with rare fine
	2.60	D		2.40			Loose wet orange medium flint grave (Lowestoft Forma	brown silty SAND with frel and some flint cobbles.	equent fine-
	3.00	D							
				3.20		X-11 J. X. X.		End of Trial Pit at 3.20m	
	Dimensions					<u> </u>	nch Support and Co		

Remarks

No groundwater encountered. Coordinates 618420 mE 247100 mN.

RSA GE	otechnics lt	D				Tria	ıl Pit L	.og		
Project ∟ane	Name: Land N	lorth o	of Humber Doucy	Client: Po	O & WO .	Jolly Holdi	ngs Ltd	Date: 16/08/2022		
	n: Ipswich, Su	ffolk								
Project	No. : 16118SI			Equipme	nt: Whee	led mecha	nical excavator			
Loca	tion Number TP2		Location Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Number	
Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description		
	Depth (m)	Type	Results	0.50	(**)		Very stiff dry blo	ocky red brown very sandy silty lk and flint gravel and rootlets.	CLAY with	
	0.70	D		0.90		* X X X X X X X X X X X X X X X X X X X	(Lowestoft Forr	nation) able grey brown sandy silty CL/ arse chalk gravel and some flir	AY with nt and chalk	1 -
	1.40	D								- -
	1.80 2.30	D D								2 -
	2.80 2.90	D B		2.60			Medium dense medium flint gra (Lowestoft Form	coarse red brown SAND with o avel. nation)	occasional fine-	-
				3.20				End of Trial Pit at 3.20m		3 -
										4 -

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.30 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 618520 mE 247160 mN.

rsa geotechnics lid	Tria
---------------------	------

al Pit Log

Date: 16/08/2022

Project Name: Land North of Humber Doucy Lane Location: Ipswich, Suffolk

Equipment: Wheeled mechanical excavator

Client: PO & WO Jolly Holdings Ltd

Project No. : 16118SI Location Type Logged By Location Number Level Scale Page Number

	TP3		TP				PAG/RB	1:25	Sheet 1 of 1	
Water	Sample a	and In S	Situ Testing	Depth	Level	Legend		Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona		Ottatum Description		
	0.20	D					Topsoil			
	0.60	D		0.40			cobbles.	ry mottled grey and red bro e-coarse chalk and flint gra	wn very sandy vel and some	
				0.80			Very stiff extremel silty CLAY with fre flint and chalk cob	y high strength dry friable b quent fine-coarse chalk gra	prown grey sandy avel and some	
	1.20	D					(Lowestoft Format	tion)		
							- sandlense at 1.3 0.30m x 0.60m	30m red brown sand, ap _l	proximately	
	1.70	D				~ × ° ×				
	1.80	PP	4.40							
	2.20	D								
	2.80	D								
				3.00		× × 0 ×		End of Trial Pit at 3.00m		
								End of That Fit at 3.00m		
										,
	Dimensions					Tre	nch Support and Co	mment		_

Pit Length Pit Width 0.60 Pit Stability Shoring Used Remarks

No groundwater encountered. Coordinates 618640 mE 247160 mN.

	otechnics lt	6				Tric	I D:+ I	•		
	,		f Humber Doucy	1			l Pit L			
Lane	INAIIIE. LAIIU I	NOTHIO	i Humber Doucy	Client: P	O & WO .	Jolly Holdi	ngs Ltd	Date: 16/08/2022		
Locatio	n: Ipswich, Su	ffolk								
Project	No. : 16118SI			Equipme	nt: Whee	led mecha	nical excavator			
Loca	tion Number	ı	Location Type		Level		Logged By	Scale	Page Number	
10/-4	TP4	nd In 9	TP Situ Testing	D 41-	11		PAG/RB	1:25	Sheet 1 of 1	
Water Strikes	Depth (m)	Type	Results	Depth (m)	Level (m)	Legend		Stratum Description		
			resuits				Topsoil			-
	0.10	D		0.50						
	0.70	D		0.00		× × × × × × × × × × × × × × × × × × ×	Very stiff dry blo chalk and flint g (Lowestoft Forn	ocky brown silty sandy CLAY gravel and rootlets. nation)	with fine-coarse	1 —
	1.40	D		1.20		× - × - × - × - × - × - × - × - × - × -	Very stiff dry blo coarse chalk gr (Lowestoft Forn	ocky brown grey silty CLAY w avel and some chalk and flint nation)	ith frequent fine- t cobbles.	· =
	1.90	D				× × × × × × × × × × × × × × × × × × ×				2 —
	2.50	D								
						<u>××</u>				
				3.00		× · × · · ×		End of Trial Pit at 3.00m		3 —
										4 —

	Dimensions				Trench Support and Comment										
Pit Le	ngth	Pit	Width	Pit	Stability	Shoring	Used				Rem	narks			
2.3	30		0.60	N	o collapse										

No groundwater encountered. Coordinates 618540 mE 247060 mN.

	Name: Land N	 North of I	Humber Doucy	Client: P	O & WO	Jolly Holdi	I Pit L		6/08/2022		
<u>_ane</u> _ocation	ı: Ipswich, Su	ffolk		J		,	90 =14		5,00,2022		
Project N	No. : 16118SI			Equipme	nt: Whee	eled mecha	nical excavator	•			
Locat	ion Number TP5	Lo	ocation Type TP		Level		Logged By PAG/RB		Scale 1:25	Page Numb Sheet 1 of	
Water Strikes			tu Testing	Depth (m)	Level (m)	Legend		Stratur	m Description		
Juncs	Depth (m) 0.65	Type	Results	0.40	(III)	X - 1 - X - 1 - X - 1 - X - 1 - X - X -	Very stiff-hard of with some fine-	coarse chall	rey brown very s k gravel and root	andy silty CLAY llets.	- - - - - - - - - - - - - - - - - - -
	0.95	D		0.80			Very stiff-hard of CLAY with frequent flint cobble (Lowestoft Forr	uent fine-co	ght brown grey vo arse chalk grave	ery sandy silty I and some chalk	1 -
	2.30	D									2 -
	2.90	D		3.10				End of T	Frial Pit at 3.10m		3 -
											4 -
											5 —
Pit Lei	Dimensions	t Width	Trench Support and Comment Pit Stability Shoring Used Remarks No collapse								

No groundwater encountered. Coordinates 618660 mE 247080 mN.

						Tui a	- I D:4 I			
O	TECHNICS LT					ırıa	al Pit L	og		
-roject l _ane	Name: Land N	North of I	Humber Doucy	Client: P	0 & WO	Jolly Hold	ings Ltd	Date: 16/08/2022		
ocation	n: Ipswich, Sut	ffolk								
	No. : 16118SI			Equipme	nt: Whe	eled mech	anical excavator		_	
Loca	tion Number TP6	Lo	cation Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Numb Sheet 1 of	
Water Strikes			tu Testing	Depth (m)	Level (m)	Legend		Stratum Description		
Suines	0.70 1.30 1.80	D D D	D D D				coarse flint and (Lowestoft Forn - red brown sar 0.50m	ocky grey brown silty sandy (chalk gravel and some rootl nation) ndy lense at 0.75m appro	ets. ximately 0.20 x	1
	2.80	D		3.00				End of Trial Pit at 3.00m		4
Pit Le	Dimensions ength Pit	Width	Pit Stability	Shoring	Used	Tre	ench Support and	Comment Remarks		
2.3	30	0.60	No collapse.	1						

No groundwater encountered. Coordinates 618580 mE 246960 mN.

rsa geotechnics lid		Trial Pit Lo	g
Project Name: Land No	orth of Humber Dougy		

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 16/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

 Location Number
 Location Type
 Level
 Logged By
 Scale
 Page Number

 TP7
 TP
 PAG/RB
 1:25
 Sheet 1 of 1

	TP7		TP				PAG/RB	1:25	Sheet 1 of 1	1
Vater			Situ Testing	Depth	Level	Legend		Stratum Description		
trikes	Depth (m)	Туре	Results	(m)	(m)	W////////		<u> </u>		
							Topsoil			
	0.20	D								1
				0.35						
				0.00		0 - X	Very stiff dry block	y mottled brown and grey b arse chalk gravel and some	rown silty sandy	
						× 0 × 0	gravel and cobbles	3.	ilile-coarse illili	
	0.60	D				0 × 0 ×	(Lowestoft Formati	ion)		
						2000	×			
				0.00		× × ×	· ·			
				0.90		X = X	Very stiff dry block	y brown grey silty CLAY wit	h frequent fine-] ,
						× ×	coarse chaik grave (Lowestoft Formati	el and occasional chalk and ion)	fiint coddies.	1
	1.20	D				X	7			
	1.20					× - ×	- small red brown	sandy lense at 1.20m ro	oughly 10cm x	
						×	15cm			
						× × ÷	*			
						× ×				
						^X	3			
	1.80	D				×				
						××	×			
						×	×			2
						× × ×				
						× × ÷	*			
	2.30	D				× ×	×			
						^X	3			
						×				
						×——×	× .			
				0.00		×	×			
	2.90	D		2.80		××	Very stiff blocky da	irk brown grey silty CLAY w	ith some fine-	1
	2.90			3.00		× × ×	(Lowestoft Formati	lint gravel and rootlets. ion)		3
				0.00				End of Trial Pit at 3.00m		
										4
										5
										5

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.30 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 618700 mE 246980 mN.

		_										
RSA GE	TECHNICS LTD	0				Tria	al Pit Lo	og				
Project Name: Land North of Humber Doucy Lane				Client: PO & WO Jolly Holdings Ltd Date: 16/08/2022								
_ocatior	n: Ipswich, Suf	folk										
Project	roject No. : 16118SI				nt: Whe	eled mecha	anical excavator					
Loca	tion Number TP8	Lo	cation Type TP	Level			Logged By PAG/RB	Scale 1:25	Page Number Sheet 1 of 1			
Water	Sample a	nd In Si	tu Testing	Depth	Level	Legend		Stratum Description				
Strikes	Depth (m)	Туре	Results	(m)	(m)		Tanasil					
	0.60	D		0.40			chalk and flint gra (Lowestoft Forma' - a lense of red by x 0.30m Very stiff extremel orange brown silty	rown clayey SAND app ly high strength mottled gi y sandy CLAY with freque occasional flint gravel and	oroximately 0.20m rey brown and nt fine-coarse	1 -		
	1.40	D								2 —		
	2.00 2.00 2.30	D PP D	4.15							2		
				3.10				End of Trial Pit at 3.10m		4		
Pit Le		Width	Pit Stability	Shoring	Used	Tre	ench Support and Co	omment Remarks				
2.3		0.60	No collapse	1								

No groundwater encountered. Coordinates 618620 mE 246860 mN.

rsa geotechnics ltd

Trial Pit Log

Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022 Lane

Location: Ipswich, Suffolk

Equipment: Wheeled mechanical excavator Project No. : 16118SI

Location Number		Location Type			Level		Logged By	Page Numbe	nge Number		
Lucai	TP9	'	TP		Levei		PAG/RB	Scale 1:25	Sheet 1 of 1		
Water	Sample a	nd In	Situ Testing	Depth	Level	Legend		Stratum Description			
trikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Description		L	
	0.10	D					Topsoil				
				0.25							
	0.40						medium flint and ch	slightly sandy CLAY wit nalk gravel and some find	th occasional fine- e rootlets.		
	0.40	D					(Lowestoft Formati	on)			
				0.55			Very stiff dry mottle	d light grey and grey bro	own slightly sandy		
							occasional subang	ibrounded fine-medium outling in the state of the state o	chalk gravel and es of rootlets and		
							occasional flint nod (Lowestoft Formation	ules.			
							(LOWESTORT Officer	511)			
	1.30	D									
	1.50	PP	4.50								
	1.00		1.00								
	2.00	D									
	2.00										
							- becomes slightly	moist below 2.30m			
	2.70	D									
	2.80	PP	4.50								
				3.00							
				3.00				End of Trial Pit at 3.00m			
	Dimensions						ench Support and Cor				

Pit Length Pit Width 0.60 Pit Stability Shoring Used Remarks

Remarks

No groundwater encountered. Coordinates 618720 mE 246860 mN. Pea gravel surrounded land drain trending approximately N-S at 0.60m. TP relocated 3m to NE to avoid.

-	Name: Land N	North of H	Humber Doucy	Client: P	O & WC		ngs Ltd	Date: 15/08/2022						
<u>₋ane</u> _ocatior	n: Ipswich, Su	ffolk	Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022											
Project l	No. : 16118SI			Equipme	nt: Whe	eled mecha	anical excavator							
Loca	tion Number TP10	Lo	cation Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Number Sheet 1 of					
Water Strikes			tu Testing	Depth (m)	Level (m)	Legend		Stratum Description						
Suines	Depth (m) 0.60	Type D	Results	0.50	(III)		medium flint grav (Lowestoft Forma	y blocky brown sandy CLA /el and rootlets. ation) riable grey brown silty sand		- - - - - - - - - - - - - - - - - - -				
	1.10	D					frequent fine-coa (Lowestoft Forma	rse chalk gravel and occas	sional flint gravel.	1 -				
	1.70	D				X - X - X - X - X - X - X - X - X - X -	- more mottled fi	<u>rom 1.50m g</u> rey brown a	and orange brown	2 -				
	2.20	D								- - - - - - - - - - - - - - - - - - -				
	2.90 2.95	D PP	4.50	2.85			Very stiff extreme brown sandy ver gravel and pocke (Lowestoft Forma	ely high strength moist friat y silty CLAY with some fine ets of silty sand. ation) End of Trial Pit at 3.00m	ble light orange e-medium chalk	3				
										4				
										5 —				
Pit Le	Dimensions ength Pi	t Width	Pit Stability	Shoring	Used	Tre	nch Support and C	omment Remarks						
2.3	30	0.60	No collapse											

No groundwater encountered. Coordinates 618440 mE 246740 mN.

rsa geotechnics Ltd	Trial Pit Log
rsa geottechnics lid	Trial Pit Log

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

 Location Number
 Location Type
 Level
 Logged By
 Scale
 Page Number

 TP11
 TP
 PAG/RB
 1:25
 Sheet 1 of 1

	TP11		TP				PAG/RB	1:25	Sheet 1 of 1	
Vater			Situ Testing	Depth	Level	Legend		Stratum Description		
trikes	Depth (m)	Туре	Results	(m)	(m)	<i>V//X///X//</i>	Toward	<u>'</u>		
	0.10	D					Topsoil			
				0.35						
				0.00		X X	Very stiff dry block	y brown silty sandy CLAY w halk gravel and roots. ion)	vith some fine-	
	0.50	D				× × ×	(Lowestoft Format	ion)		
						× × ×				
				0.80		× ××				
	0.90	D		0.00		× × · ×	Very stiff dry friable	e grey brown sandy silty CL vel and occasional flint grav	AY with fine-	
	0.00					~ × · ×	(Lowestoft Format	ion)	ci and cobbies.	1
						× × •				·
						x x -				
	1.30	D				<u>x - x - x - x - x - x - x - x - x - x -</u>				
						<u>x^0-x</u>				
						<u>x~~~x</u>				
						× 0 × 0				
						x x				
	1.00					××				
	1.90	D		2.00		× × ×				_
				2.00		× × • ·	Stiff orange brown flint gravel and col	silty sandy CLAY with some	e fine-coarse	2
						x x o	(Lowestoft Format	ion)		
						× - × -	•	•		
	2.40	D				* ^ ^ · × ·				
						x x - x				
						× · · ×				
						x x				
						~ × · ×				
	2.95	D				× × · · · ×				_
				3.10		× × ×				3
				3.10				End of Trial Pit at 3.10m		
										4
										4
		1 1								
										5

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.30 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 618450 mE 246740 mN.

RSA GE	otechnics lt	D				Tria	l Pit L	og						
Project Name: Land North of Humber Doucy ane				Client: P	Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022									
_ocation	n: Ipswich, Su	ffolk		·										
Project	Project No. : 16118SI				Equipment: Wheeled mechanical excavator									
Loca	tion Number TP12	ı	Location Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Number					
Water	Sample a	nd In	Situ Testing	Depth	Level			Ctuatium Daganintian	•					
Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Description						
	0.70	D		0.45			Very stiff-hard di roots and occas (Lowestoft Form	ry blocky red brown very sar ional flint cobbles. aation)	ndy CLAY with	1 —				
	1.20	D		1.10			Lense of irregula fine-medium SA (Lowestoft Form		lightly clayey					
	1.50 1.50	D PP	4.50	1.40			Very stiff extrem and orange brow medium rounded	ely high strength friable dam vn slightly sandy CLAY with d-subrounded chalk gravel, o el size pockets of red brown	some fine- occasional flint					
	2.20	D								2				
	2.80 2.90	PP D	4.13	3.00				End of Trial Pit at 3.00m		3 —				
										4				

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.40 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 618640 mE 246740 mN.

RSA GEOTECHNICS LTD

Trial Pit Log

Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

Location Number Location Type Scale Page Number

			Page Numbe Sheet 1 of 1									
		nd In 9	Situ Testing	Donath	Laval							
Vater trikes	Depth (m)	Type	Results	Depth (m)	Level (m)	Legend		Stratum Description				
	0.15	D	, toounte				Topsoil					
	0.50	D		0.30			occasional subrour of red brown silty s (Lowestoft Formation	on)	tlets with pockets			
	1.00 1.00	D PP	4.50	0.00			greenish brown sar subrounded chalk	high strength dry friable ndy CLAY with some fine gravel and occasional ar dules with traces of root on)	e-medium ngular flint gravel			
	1.80	D					- becoming slightly - occasional chalk					
	2.40 2.50	D PP	3.00				- becoming stiff be	olow 2.40m approxima	ately			
	2.90 3.00	PP D	3.75	3.00				End of Trial Pit at 3.00m				
	Dimensions						ench Support and Cor					

Pit Length Pit Width 0.60 Pit Stability Shoring Used Remarks

No groundwater encountered. Coordinates 618860 mE 246780 mN.

rsa geotteghnics lid		Trial Pit Lo	og
Project Name: Land No	orth of Humber Doucy	Client, DO 9 MO Jelly Heldings Ltd	D-4

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

	No. : 16118SI			Equipment: Wheeled mechanical excavator Level Logged By Scale Page 1								
Loca	tion Number TP14	L	ocation Type TP	Level			Logged By PAG/RB	Page Numb				
Vater trikes			Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description				
uikes	Depth (m)	Туре	Results	(111)	(111)		Topsoil			-		
	0.30	D					·					
	0.50	D		0.40			Very stiff dry mid br medium chalk grave (Lowestoft Formation	own sandy silty CLAY wel and occasional flint con)	ith some fine- bbles.			
	0.90	D		0.80		x x x . x . x . x . x . x . x . x	Very stiff dry friable fine-medium chalk a and rootlets. (Lowestoft Formation	light brown sandy silty (and flint gravel occasion	CLAY with frequent al flint cobbles			
	1.50	D					- less chalk from 1					
							- becomes moist fr	om 1.90m				
	2.10	D										
	2.80	D		0.00								
				2.90				End of Trial Pit at 2.90m				
	Dimensions ength Pi	t Width	Pit Stability	Shoring	L	T _{re}	nch Support and Con	nment Remarks		_		

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.30 No collapse

Remarks

No groundwater encountered. Coordinates 618560 mE 246620 mN.

rsa geotiechnics ltd	,	Trial Pit Log

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechancial excavator

Location Number TP15		Location Type TP		Level			Logged By PAG/RB	Scale 1:25	Page Numb Sheet 1 of	
Vater			Situ Testing	Depth	Level	Legend		Stratum Description		
trikes	0.40 0.80	Type D	Results 4.50	0.25	(m)		Topsoil Very stiff-hard dry fr with occasional fine (Lowestoft Formatic Very stiff-hard extre and grey slightly sal coarse chalk and oc	iable blocky brown sligh flint gravel and rootlets	riable grey brown brounded fine-	
	1.10	D					rootlets. (Lowestoft Formatic	n)		
	1.40	PP	4.50							
	1.60	D								
	2.20	D					- becoming moist b	elow 2.10m		
	2.40	PP	4.50							
	2.80	D		3.00				End of Trial Pit at 3.00m		
								Lita of Thai Fit at 3.00m		

Pit Length 2.30 Pit Width 0.60 Pit Stability No collapse Shoring Used Remarks

Remarks

No groundwater encountered. Coordinates 618680 mE 246640 mN.

rsa geotechnics Ltd	
---------------------	--

Trial Pit Log

Project Name: Land North of Humber Doucy
Lane

Client: PO & WO Jolly Holdings Ltd

Date: 15/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

 Location Number
 Location Type
 Level
 Logged By
 Scale
 Page Number

 TP16
 TP
 PAG/RB
 1:25
 Sheet 1 of 1

Loou	TP16		TP		Levei		PAG/RB	1:25	Sheet 1 of	
Water		and In S	itu Testing	Depth	Level	Ī	.,,,,,,,		0	İ
trikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.10	D					Topsoil			
				0.25		× × ×	sandy silty CLAY v	y high strength dry friable	e brown slightly el and rootlets.	
	0.60	D				X - X	(Lowestoft Format	ion)		
	0.60	PP	4.50	0.80		× × ×	Very stiff extremely	y high strength dry friable	e light grey and	
	1.00	PP	4.50				greenish brown sa	andy CLAY with some fine gravel and occasional masize nodules.	e-medium	
	1.30	D					(Loweston Format	ion)		
	1.80	D		1.70			Very stiff friable fis with some flint gra (Lowestoft Format	sured light grey and brow vel and cobbles. ion)	wn sandy CLAY	
	2.30	D					- becoming locally	very sandy below 2.	10m	
				2.40			occasional dark gr	ottled grey brown, orang- rey slighty sandy CLAY w led fine-medium chalk gr ion)	ith much	
	2.80 2.80	D PP	4.50				`	,		
				3.00				End of Trial Pit at 3.00m		
	Dimensions					Tro	nch Support and Co	mmont		

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.40 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 618780 mE 246660 mN.

rsa geotechnics Ltd

Trial Pit Log

Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 15/08/2022 Lane Location: Ipswich, Suffolk Equipment: Wheeled mechanical excavator Project No. : 16118SI

Location Number Lo		ocation Type		Level		Logged By Scale Pa					
	TP17		TP				PAG/RB 1:25 Sheet 1 of				
Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend		Stratum Description			
	0.10 0.40	Type D	Results	0.25		X - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Topsoil Very stiff-hard dry fine-medium subar (Lowestoft Formati	orown slightly sandy silty C ngular flint gravel and rootlo on)	CLAY with some ets.		
	0.80	D PP	4.50	0.70		× × × × × × × × × × × × × × × × × × ×	Very stiff-hard dry some fine-medium cobbles and traces (Lowestoft Formati	friable light brown sandy si chalk and flint gravel with of rootlets. on)	Ity CLAY with occasional flint	1 -	
	1.50	D		1.40		8 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	Very stiff friable lig medium chalk grav and flint cobbles ai (Lowestoft Formati - becoming moist	on)	with some fine- dium flint gravel		
	2.00	D								2 -	
	2.50	D									
				3.00				End of Trial Pit at 3.00m		3 -	
										4 -	
										5 -	
	Dimensions					Te	ench Support and Cor	nment		<u> Ш</u>	
Pit Le	ngth Pi	t Width	Pit Stability	Shoring	Used		onon oupport and our	Remarks			
2.5		0.60	No collapse	1							

No groundwater encountered. Coordinates 618700 mE 246520 mN. Digger ripping through ground down to 1.40m. Able to dig below 1.40m

rsa geotechnics Ltd			Trial Pit Log									
Project Lane	Name: Land N	North o	f Humber Doucy	Client: P	O & WO	Jolly Holdi	ngs Ltd	Date: 16/08/2022				
	n: Ipswich, Su	ffolk		•								
Project	No. : 16118SI			Fauipme	nt: Whee	led mecha	nical excavator					
	tion Number		Location Type TP		Level		Logged By PAG/RB	Scale 1:25	Page Number Sheet 1 of 1			
Water	Sample a		Situ Testing	Depth	Level	Legend		Stratum Description				
Strikes	Depth (m)	Туре	Results	(m)	(m)	\(\/\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Tonooil	·				
	0.10	D		0.40			Topsoil					
	0.60	D		0.10			Very stiff-hard d with rootlets and (Lowestoft Forn	lry blocky red brown very sand d fine-coarse flint gravel. nation)	dy silty CLAY			
	1.10	D		0.85			silty sandy CLA	extremely high strength dry blo Y with frequent fine-coarse ch arse flint gravel and occasion nation)	alk gravel and	1		
	1.40	PP	4.50					coarse red brown sand at	1.50m			
	1.80	D					approximately 2	20cm x 15cm_		2		
	2.50	D										
	2.90	D		3.00		× × · · · ×		End of Trial Pit at 3.00m		3		
										4		
										5		

Dimensions Trench Support and Comment

Pit Length Pit Width Pit Stability Shoring Used Remarks

2.30 0.60 No collapse

Remarks

No groundwater encountered. Coordinates 619128 mE 246415 mN.

|--|

Trial Pit Log Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 17/08/2022 Lane Location: Ipswich, Suffolk Project No.: 16118SI Equipment: Wheeled mechanical excavator Location Type Page Number Location Number Level Logged By Scale TP195 TP MR 1:25 Sheet 1 of 1 Sample and In Situ Testing Water Depth Level Stratum Description Legend (m) Strikes (m) Depth (m) Type Results Topsoil (Very stiff dark-brown slightly silty very sandy clay with some angular-subangular fine-medium flint gravel and occasional rootlets and plant debris) 0.20 D 0.40 Very stiff orange-brown slightly silty very sandy CLAY with <u>></u>e 0.50 D some angular-subangular fine-coarse flint gravel and occasional rootlets. <u>></u> (Lowestoft Formation) 0.70 Very stiff mottled grey and brown slightly slightly sandy CLAY with much angular-subrounded fine-coarse chalk gravel <u>></u> and some angular-subangular fine-coarse flint gravel. 0.90 D (Lowestoft Formation) - pocket of sand observed in sidewalls of pit at <u>></u> .__× 0.95-1.15m, minimal sand found in main pit -------------D 1.50 <u>>ç</u> 2.00 D 2 - rare cobble sized flint fragments found between × × 2.20-2.60m <u>√</u> 2 50 D <u>১৫</u> 2.85 Orange-brown silty slightly clayey medium-coarse SAND with 2.90 D occasional angular-subrounded fine-medium flint and chalk 3.00 3 gravel. (Lowestoft Formation) End of Trial Pit at 3.00m 5

Dimensions Trench Support and Comment Pit Stability Pit Width Pit Length Shoring Used 0.80

No groundwater encountered. Pit backfilled to 0.85m with stone and vertical monitoring pipe - BRE Digest 365 soakage tests undertaken. Coordinates 618470mE, 247130mN

SA GEOTIECHNICS LID	Trial Pit Log
---------------------	---------------

Project Name: Land North of Humber Doucy Lane Client: PO & WO Jolly Holdings Ltd Date: 18/08/2022

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

. 5,000	10 1011001						arrical executates			
Location Number TP205		Location Type TP		Level			Logged By LG	Scale 1:25	Page Numb	
Vater		nd In	Situ Testing	Depth	Level					İ
trikes	Depth (m)	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.40	D	recurs				Topsoil (Dark brown and occasional roo	n slightly sandy clay wit tlets)	h some flint gravel	
	0.80	D		0.70		X - X	Stiff brown slightly subrounded flint gr (Lowestoft Formati	silty sandy CLAY with seavel. on)	ome angular-	
	1.20	D		1.00		30	Firm light grey sand flint and chalk grav (Lowestoft Formation	dy CLAY with occasiona el. on)	al sub-rounded fine	
	1.60	D		1.40			Stiff dark brown slig subrounded flint gr (Lowestoft Formati	ghtly sandy CLAY with c avel. on)	occasional angular-	
	2.30	D		2.00		*	Orange silty SAND (Lowestoft Formati	with occasional flint gra on)	avel.	
	2.80	D		2.60		*	Light brown and on angular-subrounde (Lowestoft Formati	ange silty SAND with oo d flint and chalk gravel. on)	ccasional fine	
				3.00		×××××		End of Trial Pit at 3.00m	1	
	Dimensions					Tre	ench Support and Cor	nment		

Pit Stability No collapse Pit Length Pit Width Shoring Used Remarks

Remarks

No groundwater encountered. Coordinates 618620mE, 247200mN

|--|

Trial Pit Log Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 17/08/2022 Lane Location: Ipswich, Suffolk Project No.: 16118SI Equipment: Wheeled mechanical excavator Page Number Location Number Location Type Level Logged By Scale TP215 ΤP MR 1:25 Sheet 1 of 1 Sample and In Situ Testing Water Depth Level Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Topsoil (Very stiff dark-brown slightly silty very sandy clay with some angular-subangular fine-medium flint gravel and occasional rootlets and plant debris) 0.20 D 0.45 Very stiff orange-brown slightly silty very sandy CLAY with some angular-subangular fine-coarse flint gravel and 0.55 D occasional rootlets. 0.65 (Lowestoft Formation) Very stiff mottled grey and brown slightly silty slightly sandy CLAY with much angular-subrounded fine-coarse chalk gravel 0.90 D and some angular-subangular fine-medium flint gravel and occasional rootlets. (Lowestoft Formation) <u>><</u> - rootlets found between 0.65-1.15m 1.40 D 1.90 D 2 D 2 40 2.90 D 3.00 3 End of Trial Pit at 3.00m 5

Dimensions Trench Support and Comment Pit Stability Pit Length Pit Width Shoring Used 0.80

No groundwater encountered. Pit backfilled to 0.95m with stone and vertical monitoring pipe - BRE Digest 365 soakage tests undertaken. Coordinates 618620mE, 247030mN

rsa geotechnics ltd	
---------------------	--

Trial Pit Log Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 17/08/2022 Lane Location: Ipswich, Suffolk Project No.: 16118SI Equipment: Wheeled mechanical excavator Page Number Location Number Location Type Level Logged By Scale **TP225** TP MR 1:25 Sheet 1 of 1 Sample and In Situ Testing Water Depth Level Stratum Description Legend (m) Strikes (m) Depth (m) Type Results Topsoil (Very stiff dark-brown slightly silty very sandy clay with some angular-subangular fine-medium flint gravel and occasional rootlets and plant debris) 0.20 D 0.40 Very stiff orange-brown slightly silty very sandy CLAY with 0.50 D some angular-subangular fine-coarse flint gravel and occasional rootlets. 0.65 (Lowestoft Formation) Very stiff mottled grey and brown slightly silty very sandy CLAY with pockets of orange-brown slightly silty mediumcoarse sand and much angular-subrounded fine-coarse chalk 0.90 D gravel and some angular-subangular flint gravel. (Lowestoft Formation) large sand pockets found between 0.70-1.20m, mainly <u>><</u> <u>১</u>৫ found in NW side wall of pit. 1.30 Very stiff mottled grey and brown slightly silty slightly sandy CLAY with much angular-subrounded fine-coarse chalk gravel D and some angular-subangular fine-coarse flint gravel. 1.50 (Lowestoft Formation) <u>><</u> . <u>></u> 2.00 D 2 D 2 40 2 50 End of Trial Pit at 2.50m 3 5 Dimensions Trench Support and Comment Pit Stability Pit Width Pit Length Shoring Used

0.75

No groundwater encountered. Pit backfilled to 0.90m with stone and vertical monitoring pipe - BRE Digest 365 soakage tests undertaken. Coordinates 618585mE, 246740mN

rsa geotechnics lid		Trial Pit Lo	g
Project Name: Land No	orth of Humber Doucy		

Client: PO & WO Jolly Holdings Ltd Date: 17/08/2022 Lane

Location: Ipswich, Suffolk

Project No. : 16118SI Equipment: Wheeled mechanical excavator

	tion Number TP235		ocation Type TP		Level		Logged By MR	Scale 1:25	Page Number Sheet 1 of 2	
Vater trikes			Situ Testing	Depth (m)	Level (m)	Legend	8	Stratum Description		
шкоо	Depth (m) 0.30	Type D	Results	()	()		angular-subangular f	slightly silty very sandy ine-medium flint gravel bris and occasional me gments)	and occasional	
	0.80	D		0.60			CLAY with much ang and some angular-su fragments and occas (Lowestoft Formation rootlets found betw	n) veen 0.60-1.20m	oarse chalk gravel cobble sized flint	
	1.30	D					gradually becomes	antly brown at top or more grey at base o found between 1.10-	flayer	
	1.80	D					***			
	2.30	D		2.50		× × × × × × × × × × × × × × × × × × ×				
				2.30			E	End of Trial Pit at 2.50m		

Pit Length 2.10 Pit Width 0.70 Pit Stability No collapse Shoring Used Remarks

Remarks

No groundwater encountered. Pit backfilled to 0.80m with stone and vertical monitoring pipe - BRE Digest 365 soakage tests undertaken. Coordinates 618630mE, 246570mN

|--|

Trial Pit Log

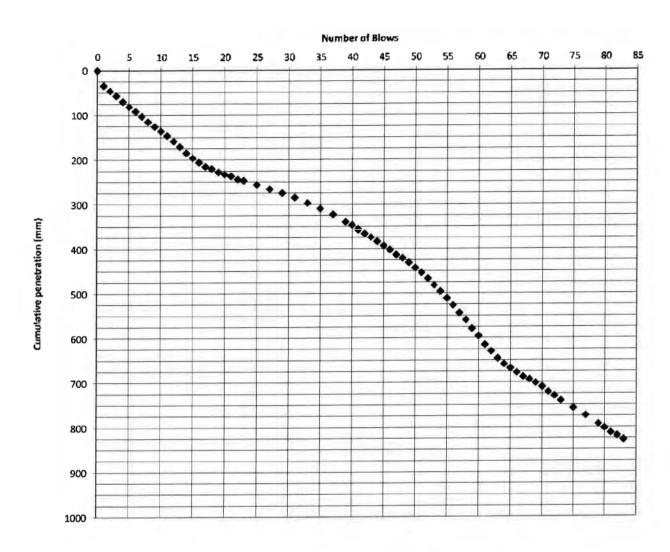
Project Name: Land North of Humber Doucy Client: PO & WO Jolly Holdings Ltd Date: 17/08/2022 Lane Location: Ipswich, Suffolk Project No.: 16118SI Equipment: Wheeled mechanical excavator Location Number Location Type Level Logged By Scale Page Number **TP245** TP MR 1:25 Sheet 1 of 1 Sample and In Situ Testing Water Depth Level Stratum Description Legend Strikes (m) (m) Depth (m) Type Results Topsoil (Dark-brown slightly silty very sandy clay with some angular-subangular fine-medium flint gravel and occasional rootlets and plant debris and occasional medium-coarse gravel sized brick fragments) 0.30 D 0.60 Very stiff brown slightly silty slightly sandy CLAY with much <u>></u>e angular-subrounded fine-coarse chalk gravel and some angular-subrounded fine-coarse flint gravel. 0.80 D <u>>e</u> . (Lowestoft Formation) <u>×</u> >¢ one cobble sized flint fragment found at approximately 1.25m 1.40 Very stiff mottled grey and brown slightly silty very sandy <u>></u> D 1.50 CLAY with pockets of orange-brown medium-coarse sand and some angular-subrounded fine-coarse chalk gravel and <u>></u>< some angular-subangular fine-coarse flint gravel. 1.75 (Lowestoft Formation) Very stiff grey silty slightly sandy CLAY with pockets of off-1.90 D white silt and some angular-subrounded fine-coarse chalk and flint gravel. 2 (Lowestoft Formation) <u>></u> - contains a large pocket of silt between 2.20-2.30m <u>><</u> D 2.30 2 40 Very stiff grey slightly silty slightly sandy CLAY with much 2 50 angular-subrounded fine-coarse chalk gravel and some angular-subangular fine-medium flint gravel. (Lowestoft Formation) End of Trial Pit at 2.50m 3 5 Dimensions Trench Support and Comment Pit Length Pit Width Pit Stability Shoring Used 0.70

No groundwater encountered. Pit backfilled to 1.20m with stone and vertical monitoring pipe - BRE Digest 365 soakage tests undertaken. Coordinates 619080mE, 246430mN

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

25/08/2022

PAGE

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

MR/JF JMK

PAG

Refer IAN 73/06 Section 4, Annex A

	Depti (Deptii (iiibgi)		
	from	to	CBR (%)	
	0.00	0.23	22	
	0.23	0.34	50	
ł	0.34	0.50	25	
	0.50	0.65	15	
- 1	0.65	0.83	29	
_				

Depth (mbdl)

Operative:

Calculated: Checked:

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location:

DCP1 0.00

Start Depth:

Inferred

Date of Test: 24/08/2022

Job No.

16118SI

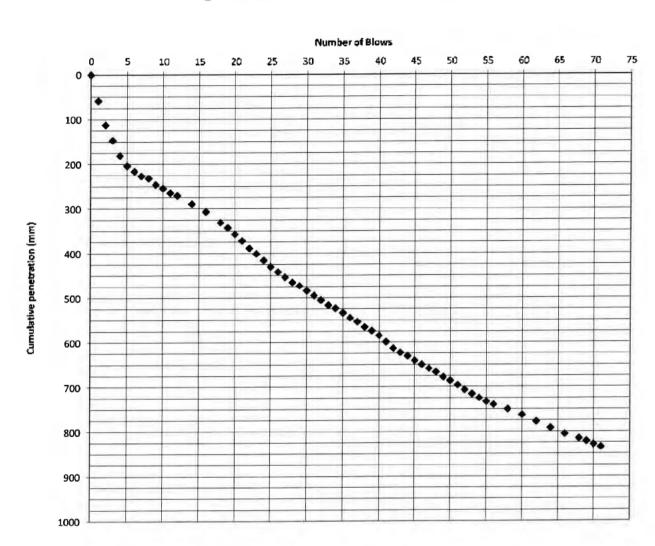
ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE

25/08/2022


PAGE

of

2

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (Depth (mbgl)		
from	to	CBR (%)	
0.00	0.20	2.3	
0.20	0.33	34	
0.33	0.43	18	
0.43	0.74	26	
0.74	0.84	43	

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP2

 Start Depth:
 0.00 m

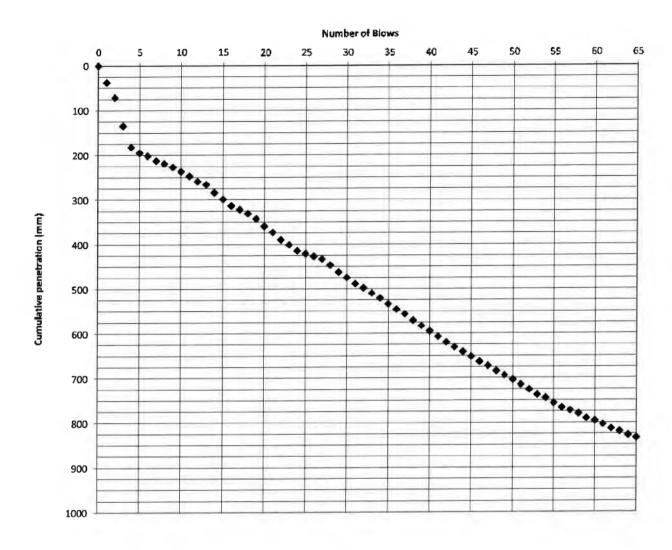
 Date of Test:
 24/08/2022

 Job No.
 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

25/08/2022

PAGE

3 of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Dopai (Depth (mbgl)	
from	to	CBR (%)
0.00	0.18	5.3
0.18	0.42	23
0.42	0.43	45
0.43	0.77	23
0.77	0.83	35
	0.00 0.18 0.42 0.43	0.00 0.18 0.18 0.42 0.42 0.43 0.43 0.77

Operative: Calculated: Checked:

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location:

DCP3

Start Depth: 0.00

Date of Test: 24/08/2022

Job No.

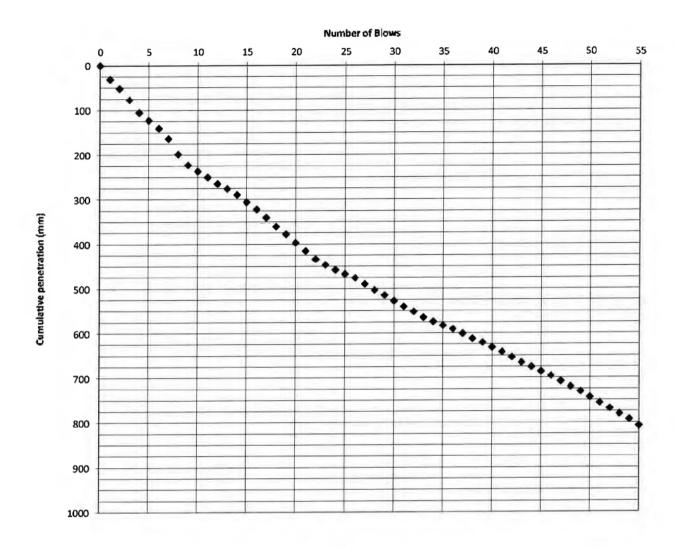
16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE


25/08/2022

PAGE

of

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (r	Depth (mbgl)		
from	to	CBR (%)	
0.00	0.16	11	
0.16	0.24	10	
0.24	0.32	18	
0.32	0.45	14	
0.45	0.81	23	

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP4

 Start Depth:
 0.00 m

 Date of Test:
 24/08/2022

 Job No.
 16118SI

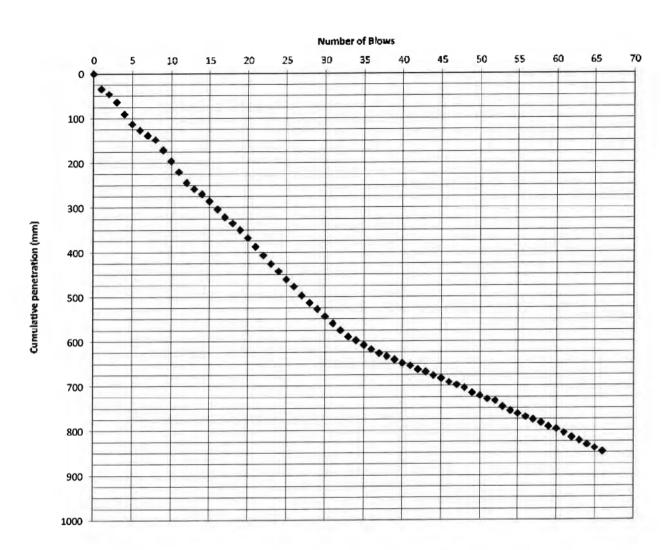
ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE

25/08/2022


PAGE

of

5

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth	Depth (mbgl)		
from	to	CBR (%)	
0.00	0.13	12	
0.13	0.15	25	
0.15	0.24	10	
0.24	0.60	16	
0.60	0.85	34	

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP5

 Start Depth:
 0.00 m

 Date of Test:
 24/08/2022

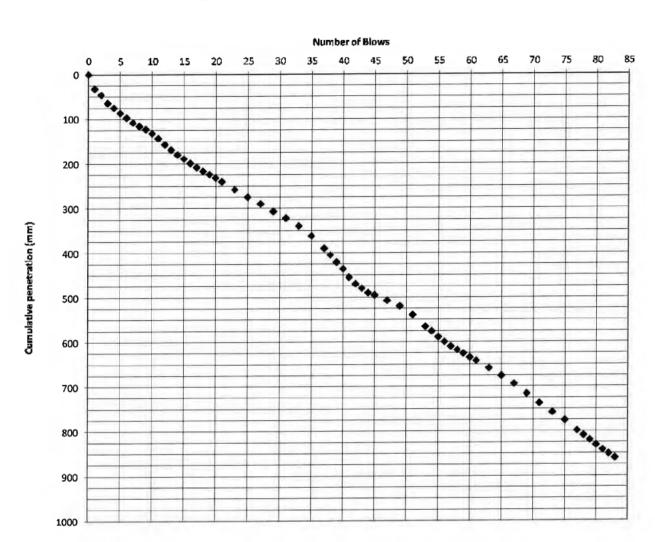
 Job No.
 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE


25/08/2022

PAGE

of

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

	Depth (i	Inferred	
	from	to	CBR (%)
	0.00	0.36	26
П	0.36	0.47	17
Т	0.47	0.54	36
П	0.54	0.66	26
П	0.66	0.86	26

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP6

 Start Depth:
 0.00 m

 Date of Test:
 24/08/2022

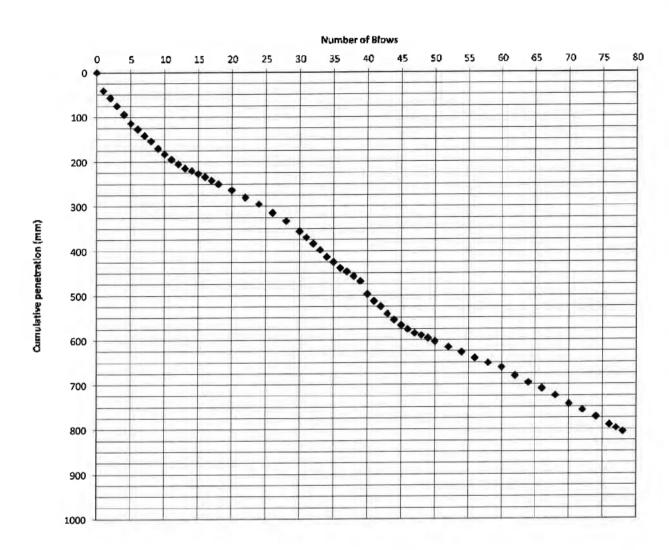
 Job No.
 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE


25/08/2022

PAGE

of

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

	Depth (mbgl)		Inferred
	from	to	CBR (%)
	0.00	0.21	15
П	0.21	0.33	34
П	0.33	0.47	21
1	0.47	0.58	17
1	0.58	0.81	38

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location: DCP7

Start Depth: **0.00** m Date of Test: **24/08/2022**

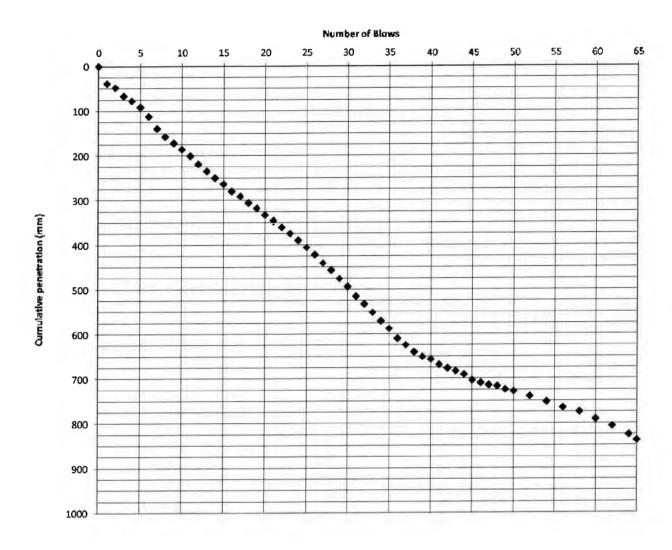
Job No.

16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

25/08/2022

PAGE

of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (mbgl)		Inferred
 from	to	CBR (%)
0.00	0.04	6.6
0.04	0.39	17
0.39	0.65	15
0.65	0.78	42
0.78	0.84	29

Land North of Humber Doucy Lane, Ipswich, Suffolk

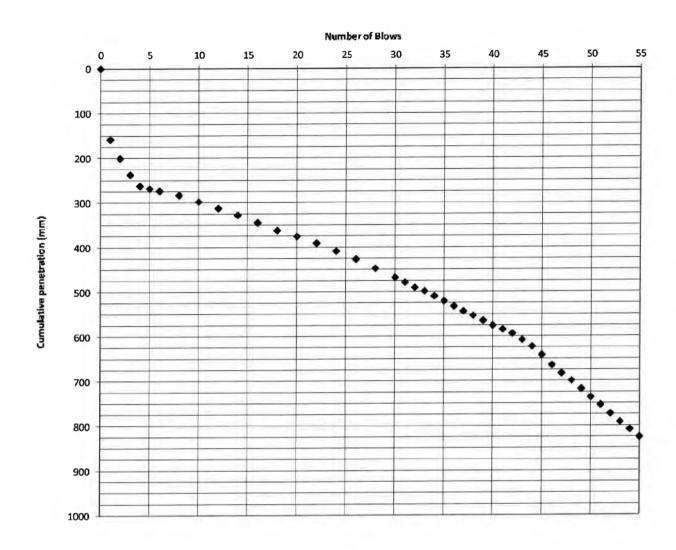
Location: DCP8 Start Depth: 0.00 m Date of Test: 24/08/2022 Job No. 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE


26/08/2022

PAGE

of

of **20**

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

	Depth (mbgl)		Inferred
1	from	to	CBR (%)
	0.00	0.16	1.4
ı	0.16	0.26	7.3
	0.26	0.47	34
	0.47	0.61	24
	0.61	0.83	14

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP9

 Start Depth:
 0.00 m

 Date of Test:
 25/08/2022

 Job No.
 16118SI

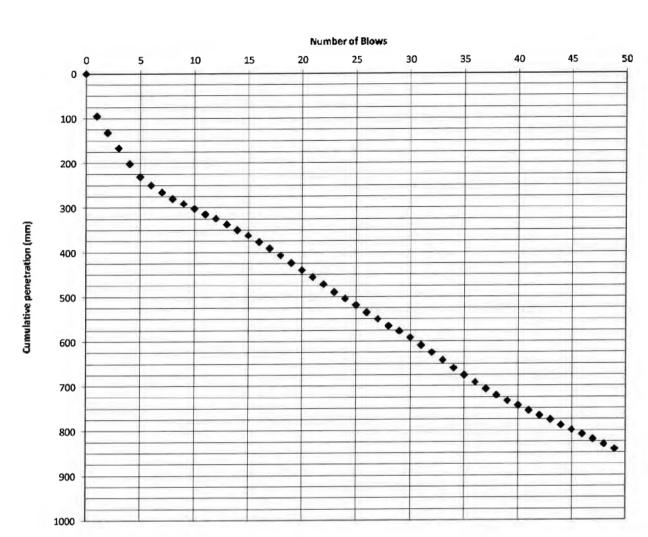
RSA GEOTTECHNICS LITO

TEST REPORT

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

26/08/2022

PAGE 10

of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

	Depth (mbgl)		Interred
	from	to	CBR (%)
	0.00	0.10	2.5
П	0.10	0.23	7.3
П	0.23	0.36	20
	0.36	0.72	17
1	0.72	0.84	24

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP10

 Start Depth:
 0.00 m

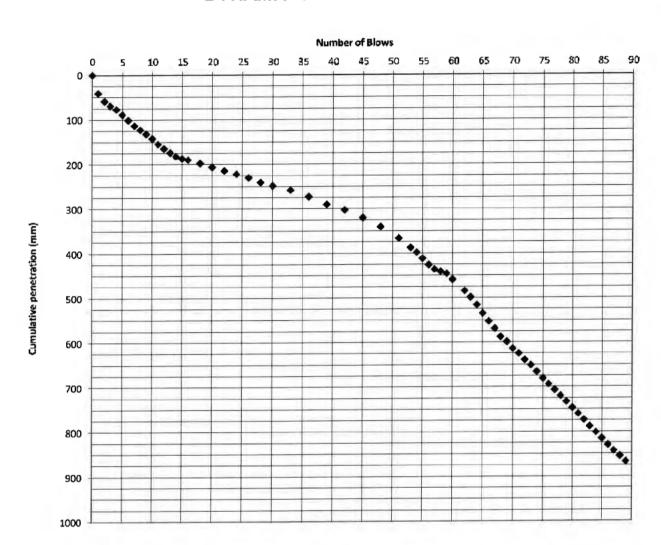
 Date of Test:
 25/08/2022

 Job No.
 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

26/08/2022

PAGE 11

of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (r	nbgl)	Inferred
from	to	CBR (%)
0.00	0.04	6.0
0.04	0.19	25
0.19	0.34	60
0.34	0.44	24
0.44	0.45	55
0.45	0.87	19

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location: DCP11
Start Depth: 0.00 m
Date of Test: 24/08/2022
Job No. 16118SI

RSA GEOTIBOHINIOS LITO

TEST REPORT

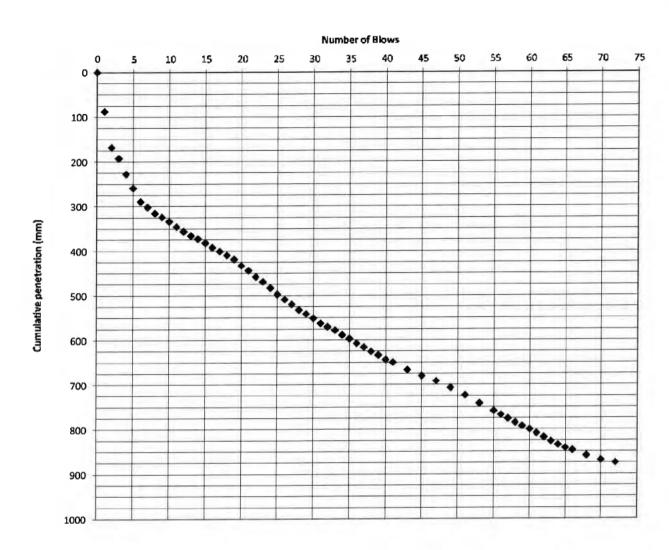
ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE

26/08/2022


PAGE

of

12

f 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations: Refe

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (r	mbgl)	Inferred
from	to	CBR (%)
0.00	0.17	2.8
0.17	0.30	9.3
0.30	0.42	27
0.42	0.54	21
0.54	0.85	32
0.85	0.88	59

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP12

 Start Depth:
 0.00 m

 Date of Test:
 25/08/2022

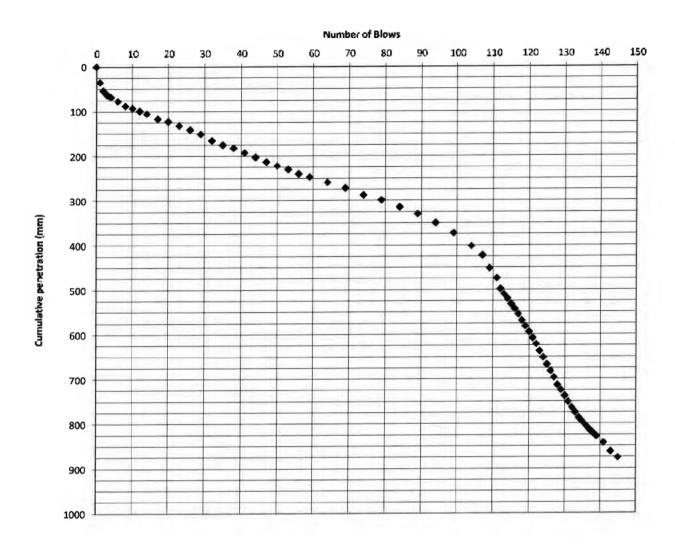
 Job No.
 16118SI

RSA GEOTECHNICS UTO

TEST REPORT

ISSUED BY

RSA GEOTECHNICS LTD


TELEPHONE (01449) 723723

DATE OF ISSUE

26/08/2022

PAGE 13 of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations: Refer IAN 73/

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

CBR (%)
84
20
3 33

Prolect

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP13

 Start Depth:
 0.00 m

 Date of Test:
 25/08/2022

 Job No.
 16118SI

RSA GÉDTECHNICS LITO

TEST REPORT

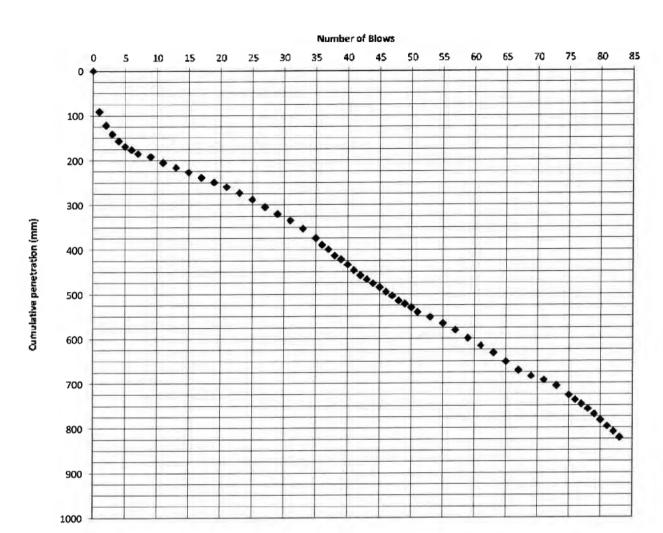
ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE

26/08/2022


PAGE

14

of

20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

	Depth (r	mbgi)	Inferred	
	from	to	CBR (%)	
Г	0.00	0.09	2.6	
П	0.09	0.17	13	
П	0.17	0.23	96	
Т	0.23	0.55	23	
ı	0.55	0.71	35	
	0.71	0.82	23	

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location:

DCP14

Start Depth:

0.00

Date of Test: 25/08/2022

m

Job No.

16118SI

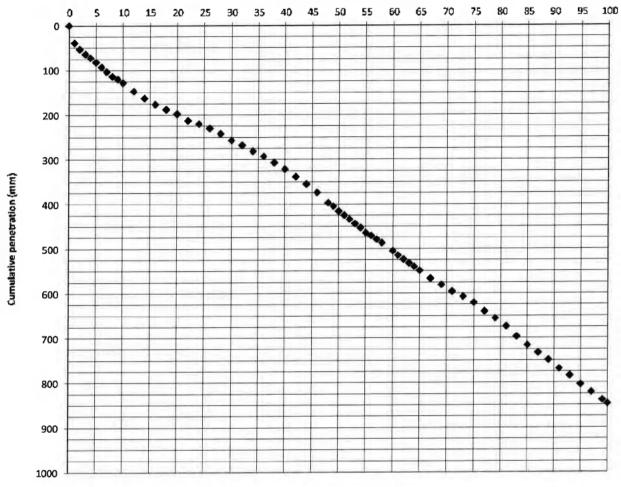
RSA GEOTECHNICS LID

TEST REPORT

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

26/08/2022

PAGE 15 of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Dehiii (ii	ibgl)	Inferred
from	to	CBR (%)
0.00	0.04	6.6
0.04	0.18	29
0.18	0.34	44
0.34	0.85	30

Project

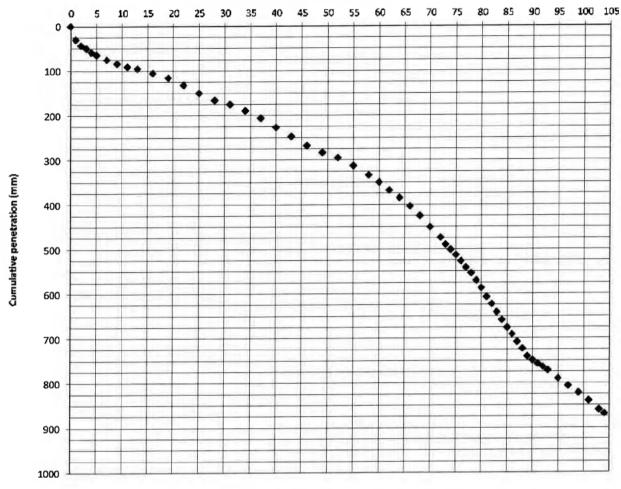
Land North of Humber Doucy Lane, Ipswich, Suffolk

Location: DCP15
Start Depth: 0.00 m
Date of Test: 24/08/2022
Job No. 16118SI

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

30/08/2022

20 PAGE 16

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating Instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

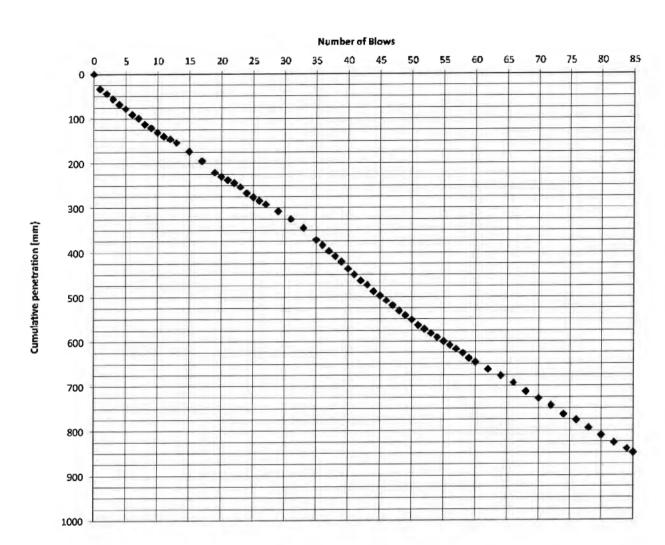
Depth (mbgl)	Inferred
from	to	CBR (%)
0.00	0.03	8.3
0.03	0.08	36
0.08	0.12	82
0.12	0.40	44
0.40	0.74	18
0.74	0.87	31

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location: DCP16 Start Depth: 0.00 m Date of Test: 25/08/2022 Job No. 16118SI

ISSUED BY

RSA GEOTECHNICS LTD


TELEPHONE (01449) 723723

DATE OF ISSUE

30/08/2022

PAGE 17 of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (mbgl)	Inferred
from	to	CBR (%)
0.00	0.03	7.5
0.03	0.35	27
0.35	0.59	22
0.59	0.85	32
U. H.		

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP17

 Start Depth:
 0.00 m

 Date of Test:
 24/08/2022

 Job No.
 16118SI

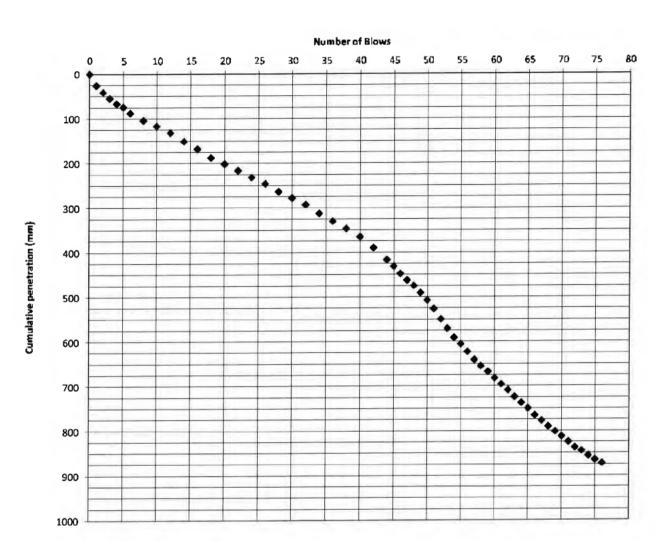
ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE

30/08/2022


PAGE

of

18

f 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF	
Calculated:	JMK	
Checked:	PAG	

	Depth (m	nbgl)	Inferred
f	rom	to	CBR (%)
0	00.0	0.10	20
	.10	0.39	32
1	1.39	0.49	18
0	.49	0.64	13
0	.64	0.87	21

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

 Location:
 DCP18

 Start Depth:
 0.00 m

 Date of Test:
 24/08/2022

 Job No.
 16118SI

RSA GEOTECHNICS LID

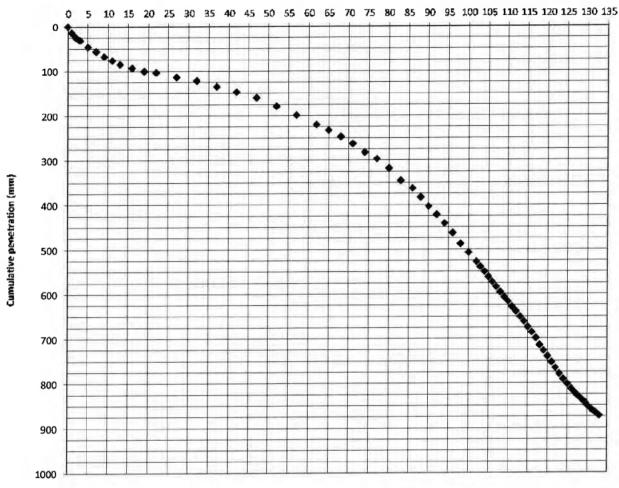
TEST REPORT

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723

DATE OF ISSUE


30/08/2022

PAGE 19 of

20

DYNAMIC CONE PENETROMETER

Number of Blows

Method of Test:

In-house method based on manufacturers operating Instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/JF
Calculated:	JMK
Checked:	PAG

Depth (mbgl)	Inferred
from	to	CBR (%)
0.00	0.09	41
0.09	0.18	119
0.18	0.32	56
0.32	0.81	25
0.81	0.87	31

Project

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location: DCP19
Start Depth: 0.00 m
Date of Test: 25/08/2022
Job No. 16118SI

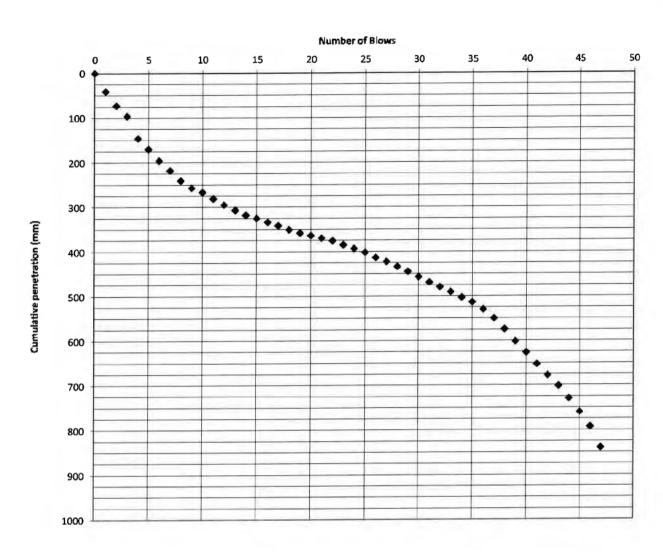
RSA GEOTIZCHNICS LITO

TEST REPORT

ISSUED BY

RSA GEOTECHNICS LTD

TELEPHONE (01449) 723723


DATE OF ISSUE

30/08/2022

PAGE

20 of 20

DYNAMIC CONE PENETROMETER

Method of Test:

In-house method based on manufacturers operating Instructions and IAN 73/06 Revision 1 (2009)

Method of Calculations:

Refer IAN 73/06 Section 4, Annex A

Operative:	MR/LG
Calculated:	JMK
Checked:	PAG

Depth (r	mbgl)	Inferred
from	to	CBR (%)
0.00	0.27	9.4
0.27	0.34	25
0.34	0.53	27
0.53	0.84	8.9
/		

Land North of Humber Doucy Lane, Ipswich, Suffolk

Location:

DCP20

Start Depth:

0.00

m Date of Test: 11/08/2022

Job No.

1611851

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH1, Test 1, 4.50m

Borehole Diameter

B := 150mm

Borehole Depth

D := 4.50m

Depth from ground level to base

 $D_c := 4.00 m$

of casing

Depth from ground level to top of test interval

Time

(mins)

 $D_w := 0.00m$

n := 100%

no gravei used

Porosity

Water

Leveis (mbGL)

D	0
0.5	0.25
1	0.51
1.5	89.0
2	0.97
3	1.21
4	1,48
5	1,8
7	2.18
9	2,49
12	2.78
15	3.15
20	3,43
25	3.6
30	3.74
40	3.98
50	4,1
60	4.48

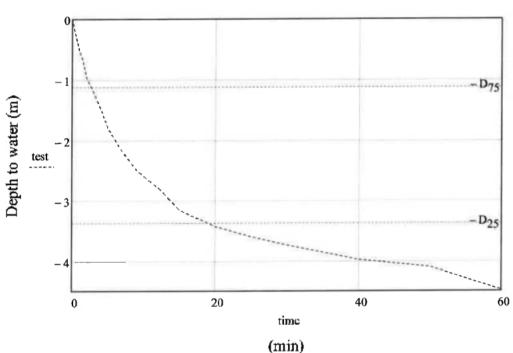
Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 1.125 \,\mathrm{m}$$


$$D_{25} = 3.375 \,\mathrm{m}$$

Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \, m^2$$

$$V_{75_25} = 39.761L$$

RSA GEOTTECHNUCS LITO

Time when borehole is 75% full

Time when borehole is 25% full

$$f = 1.6 \times 10^{-4} \cdot \text{m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH1, Test 2, 4.50m

Borehole Diameter

B := 150mm

Borehole Depth

D := 4.50 m

Depth from ground level to base

of casing

 $D_c := 4.00 m$

Depth from ground level to top

 $D_w := 0.00m$

of test interval

n := 100%

no gravel used

Porosity

Time

(mins)

Water Levels

(mbGL)

0	0
0.19	0.5
0.28	1
0.39	1.5
0.47	2
0.65	3
0.78	4
0.9	5
1.16	7
1.36	9
1.59	12
1.85	15
2,21	20
2.5	25
2.77	30
3.15	40
3.45	50
3.69	60

El.

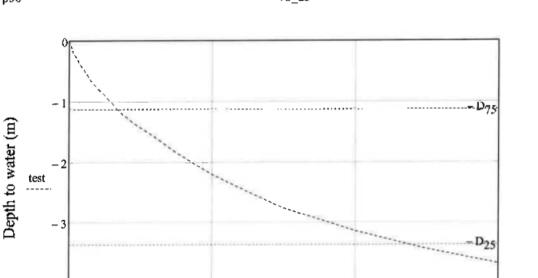
Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 1.125 \,\mathrm{m}$$


$$D_{25} = 3.375 \,\mathrm{m}$$

Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \, m^2$$

$$v_{75_25} = 39.761L$$

20

time (min) 40

Time when borehole is 75% full

0

$$t_{75} := 6.9 min$$

Time when borehole is 25% full

$$t_{25} := 46.9 min$$

Soil Infiltration Rate

$$f = 6.5 \times 10^{-5} \cdot \text{m·s}^{-1}$$

60

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH1, Test 3, 4.50m

Borehole Diameter

B := 150mm

Borehole Depth

D := 4.50m

Depth from ground level to base

of casing

 $D_c := 4.00 \text{m}$

Depth from ground level to top

 $D_w := 0.00m$

of test interval

n := 100%

no gravel used

Porosity

Water

Levels (mbGL)	
0	
0.15	

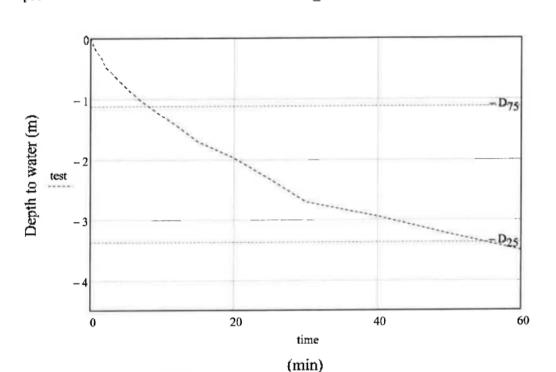
D	0
0.5	0.15
1	0.24
1.5	0.32
2	0.46
3	0.57
4	0.7
5	0.81
7	1,03
9	1.2
12	1.44
15	1.71
20	1.98
25	2.33
30	2.71
40	2.95
50	3.24
60	3.51

Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016)

Date: 23/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 1.125 \,\mathrm{m}$$


$$D_{25} = 3.375 \,\mathrm{m}$$

Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \, \text{m}^2$$

$$V_{75_25} = 39.761 L$$

RSA CEÓTECHNICS LITO

Time when borehole is 75% full

Time when borehole is 25% full

$$t_{25} := 55 \min$$

$$f = 5.6 \times 10^{-5} \cdot \text{m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Caics:JMK. Checked:GJB.

RSA GEOTECHNICS LITE

Borehole Number BH2, Test 1, 7.00m

Borehole Diameter

B := 150 mm

Borehole Depth

D := 7.00m

Depth from ground level to base

of casing

 $D_c := 6.50 m$

Depth from ground level to top

 $D_s := 0.00 \text{m}$

of test interval

Completion depth of test

 $D_e := 5.55 m$

Pipe diameter

 $B_p := 150 mm$

Porosity

n := 100% no gravel used

Water
Time Levels
(mins) (mbGL)

0	0
0.5	0.19
1	0.26
1,5	0.32
2	0.41
3	0.61
4	0.79
5	0.98
7	1,24
Э	1.51
12	1.9
15	2.29
20	2.75
25	3.22
30	3.65
40	4.41
50	5.03
60	5.55

D.

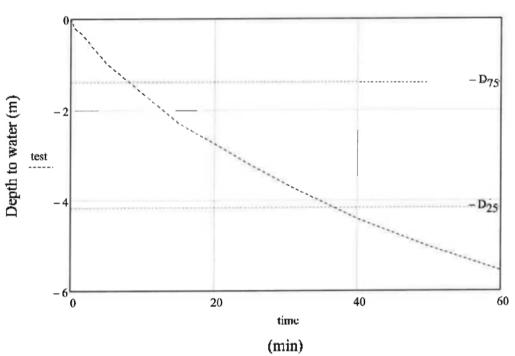
Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

Based on BRE Digest DG365 (2016)

Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 1.387 \, \text{m}$$


$$D_{25} = 4.162 \,\mathrm{m}$$

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \,\mathrm{m}^2$$

$$V_{75_25} = 49.038L$$

RSA GEOTECHNICS LTD

Time when borehole is 75% full

Time when borehole is 25% full

$$t_{25} := 36.8 min$$

$$f = 1.1 \times 10^{-4} \text{ m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK. Checked:GJB.

RSA GEOTIECHNICS LTD

Borehole Number BH2, Test 2, 7.00m

Borehole Diameter

B := 150mm

Borehole Depth

D := 7.00m

Depth from ground level to base

of casing

 $D_c := 6.50 m$

Depth from ground level to top

 $D_s := 0.00m$

of test interval

 $D_e := 5.85m$

Pipe diameter

 $B_p := 150mm$

Porosity

n := 100% no gravel used

Water Time Levels

Completion depth of test

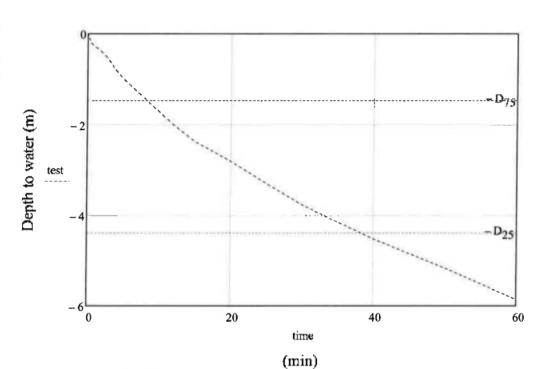
Time Levels (mbGL)

0	D
0.5	0.21
1	0.28
1.5	0.34
2	0.41
3	0.58
4	0.81
5	0.99
7	1.28
9	1.57
12	2.01
15	2.38
20	2.81
25	3.3
30	3.77
40	4.52
50	5.17
60	5.85

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} \approx 1.462\,m$$


$$D_{25} = 4.387 \, \text{m}$$

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \,\mathrm{m}^2$$

$$V_{75_25} = 51.689 L$$

RSA GEOTIECHNICS LITO

Time when borehole is 75% full

$$t_{75} := 8.6min$$

Time when borehole is 25% full

$$t_{25} := 38.1 min$$

$$f = 1.2 \times 10^{-4} \cdot \text{m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH2, Test 3, 7.00m

Borehole Diameter

B := 150mm

Borehole Depth

D := 7.00m

Depth from ground level to base

of casing

 $D_c := 6.50 m$

Depth from ground level to top

 $D_s := 0.00 m$

of test interval

Completion depth of test

 $D_e := 5.51 m$

Pipe diameter

 $B_p := 150mm$

Porosity

n := 100% no gravel used

Water Time Levels (mins) (mbGL)

0	0
0.5	0.22
1	0.28
1.5	0.35
2	0.4
3	0.54
4	0.69
5	0.91
7	1.17
9	1.43
12	1.B4
15	2.09
20	2.59
25	3.1
30	3.56
40	4.32
50	5.01
60	5.51

1

Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

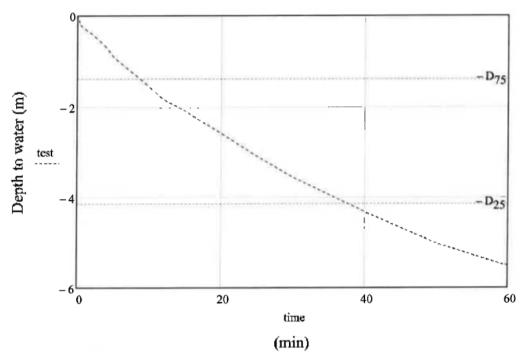
Based on BRE Digest DG365 (2016)

Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 1.377 \,\mathrm{m}$$

$$D_{25} = 4.133 \,\mathrm{m}$$


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \,\mathrm{m}^2$$

$$V_{75_25} = 48.685L$$

Time when borehole is 75% full

$$t_{75} := 8.7 min$$

Time when borehole is 25% full

$$t_{25} := 37.7min$$

$$f = 1.1 \times 10^{-4} \cdot \text{m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH3, Test 1, 6.00m

Borehole Diameter

B := 150mm

Borehole Depth

D := 6.00m

Depth from ground level to base

-

of casing

 $D_c := 5.50 m$

Depth from ground level to top of test interval

 $D_s := 0.00m$

OI test litterva

 $D_e := 3.37m$

Pipe diameter

 $B_p := 150mm$

Porosity

n := 100% no gravel used

Time Levels (mbGL)

Completion depth of test

0 0	0
0.5 0.25	0.5
1 0.31	1
1.5 0.4	1.5
2 0.49	2
3 0.58	3
4 0.69	4
5 0.79	5
7 0.91	7
9 1.1	9
12 1.29	12
15 1.49	15
20 1.78	20
25 2.11	25
30 2.29	30
40 2.71	40
50 3.09	50
60 3.37	60

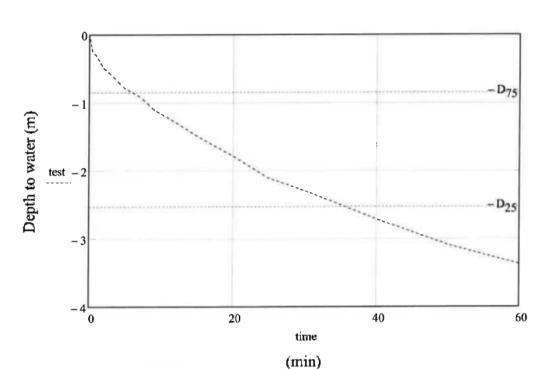
Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

Based on BRE Digest DG365 (2016)

Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 0.843 \, \text{m}$$


$$D_{25} = 2.527 \, \text{m}$$

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \, \mathrm{m}^2$$

$$V_{75_25} = 29.776 \, L$$

RSA CEOTECHNICS LID

Time when borehole is 75% full

Time when borehole is 25% full

$$f = 6.7 \times 10^{-5} \cdot \text{m} \cdot \text{s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK, Checked:GJB.

Borehole Number BH3, Test 2, 6.00m

Borehole Diameter

B := 150mm

Borehole Depth

D := 6.00 m

Depth from ground level to base

of casing

 $D_c := 5.50m$

Depth from ground level to top

 $D_s := 0.00 m$

of test interval

 $D_e := 3.11m$

Pipe diameter

 $B_{p} := 150 mm$

Porosity

n := 100% no gravel used

Water
Time Levels
(mins) (mbGL)

Completion depth of test

D	0
0.5	0.21
1	0.28
1.5	D.38
2	0.47
3	0.55
4	0.64
5	0.77
7	0.86
9	D.96
12	1.25
15	1.44
20	1.61
25	1.86
30	2.03
40	2.4
50	2.76
60	3.11

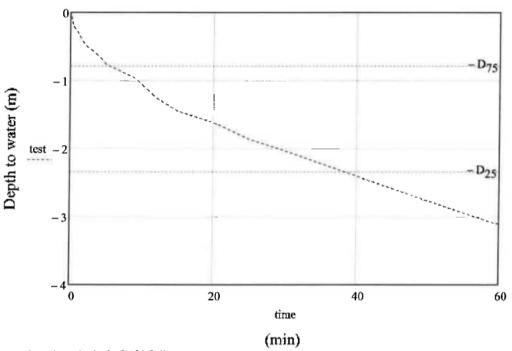
D.,

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016) Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 0.777 \,\mathrm{m}$$

$$D_{25} = 2.333 \,\mathrm{m}$$


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \, m^2$$

$$V_{75_25} = 27.4791.$$

Time when borehole is 75% full

Time when borehole is 25% full

$$t_{25} := 37.5 min$$

$$f = 5.7 \times 10^{-5} \cdot \text{m-s}^{-1}$$

Calculation Sheets For Borehole Soakaway Test, Based on BRE Digest DG365 (2016)

Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Borehole Number BH3, Test 3, 6.00m

Borehole Diameter

B := 150mm

Borehole Depth

D := 6.00m

Depth from ground level to base

of casing

 $D_c := 5.50 \text{m}$

Depth from ground level to top

 $D_s := 0.00m$

of test interval

 $D_e := 3.29 m$

Pipe diameter

 $B_p := 150 mm$

Porosity

n := 100% no gravel used

Water Time Levels (mbGL) (mins)

Completion depth of test

0	0
0.5	0.18
1	0.29
1.5	0.38
2	0.46
3	0.51
4	0.59
5	0.7
7	0.82
9	0.94
12	1.2
15	1.42
20	1.65
25	1.95
30	2.17
40	2.55
50	2.93
60	3.29

1

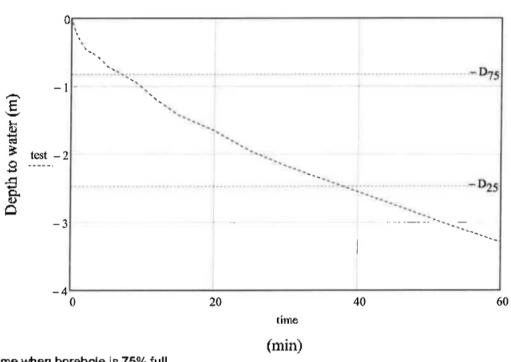
Job Number:16118SI Land North of Humber Doucy Lane, Ipswich, Suffolk Calculation Sheets For Borehole Soakaway Test,

Based on BRE Digest DG365 (2016)

Date: 29/09/2022 Calcs:JMK. Checked:GJB.

Depths when borehole is 75% and 25% full

$$D_{75} = 0.822 \,\mathrm{m}$$


$$D_{25} = 2.468 \,\mathrm{m}$$

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 0.253 \,\text{m}^2$$

$$V_{75_25} = 29.07L$$

RSA GEOTTECHNICS LITE

Time when borehole is 75% full

$$t_{75} := 7.0 min$$

Time when borehole is 25% full

$$f = 6.1 \times 10^{-5} \text{-m} \cdot \text{s}^{-1}$$

Date: 08/09/2022 Calcs:JMK. Checked:GJB.

Trial Pit Number TP195, Test 1, 3.00m

Trial Pit Length

 $L_{\alpha} := 2.50 \text{m}$

Trial Pit Width

.₩.:= 0.80m

Trial Pit Depth

D := 3.00 m

Depth from ground level to water

level at start of the test

 $D_s := 0.90 m$

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

0	0.9
0.5	0.95
1	0.97
1.5	0.99
2	1
3	1.02
4	1.05
5	1.07
9	1.12
10	1.13
12	1.15
15	1.18
25	1.3
30	1.35
323	1.92
350	2.08
400	2.48

D

D

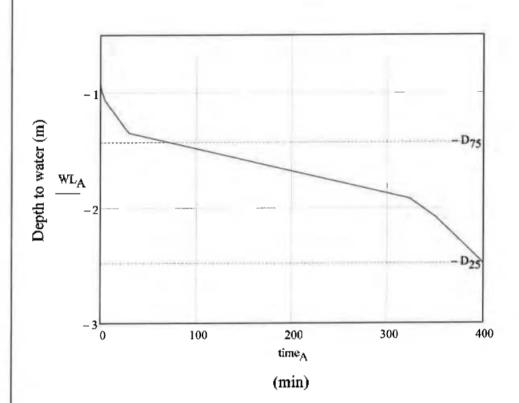
Depths when trial pit is 75% and 25% full

$$D_{75} = 1.425 \,\mathrm{m}$$

$$D_{25} = 2.475 \,\mathrm{m}$$

Date: 08/09/2022 Calcs:JMK. Checked:GJB.

Þ


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 8.93 \, m^2$$

$$V_{75_25} = 882L$$

Time when trial pit is 75% full

$$t_{75A} := 75min$$

Time when trial pit is 25% full

$$t_{25A} := 400 min$$

$$f_A = 5.1 \times 10^{-6} \cdot \text{m} \cdot \text{s}^{-1}$$

RSA GEOTECHNICS LITO

Trial Pit Number TP195, Test 2, 3.00m

Trial Pit Length

L := 2.50m

Trial Pit Width

W := 0.80 m

Trial Pit Depth

D := 3.00m

Depth from ground level to water level at start of the test

 $D_g := 0.95 m$

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time	Water Levels
(minutes)	(mbGL)

0	0.95
0.5	0.95
1	0.97
1.5	0.98
2	1
5	1.04
10	1.11
15	1.17
20	1.22
40	1.4
60	1.59
90	1.8
120	2
150	2.2
180	2.36

D

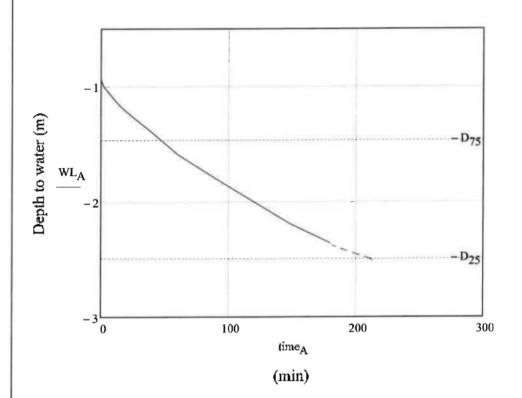
Þ

Depths when trial pit is 75% and 25% full

$$D_{75} = 1.462 \,\mathrm{m}$$

$$D_{25} = 2.487 \, m$$

D


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 8.765 \,\mathrm{m}^2$$

$$V_{75_25} = 861T$$
.

Time when trial pit is 75% full

$$t_{75A} := 46min$$

Time when trial pit is 25% full

$$t_{25A} := 210min$$
 (extrapolated)

$$f_{\mathbf{A}} = 10 \times 10^{-6} \cdot \mathbf{m} \cdot \mathbf{s}^{-1}$$

Date: 31/08/2022 Calcs:JMK. Checked:GJB.

RSA CEOTECHNICS LTD

Trial Pit Number TP195, Test 3, 3.00m

Trial Pit Length $L_{c} = 2.50m$

XX := 0.80 mTrial Pit Width

D := 3.00mTrial Pit Depth

Depth from ground level to water

level at start of the test

 $D_s:=0.93\mathrm{m}$

Depth to natural groundwater level Dry

Porosity of gravel backfill n := 42% (assumed)

Water Levels (mbGL) (minutes)

0	0.93
0.5	0.93
1	0.95
1.5	0.96
2	0.97
5	1.01
10	1.06
15	1.11
20	1.15
40	1.33
60	1.5
90	1.73
100	1.77

D

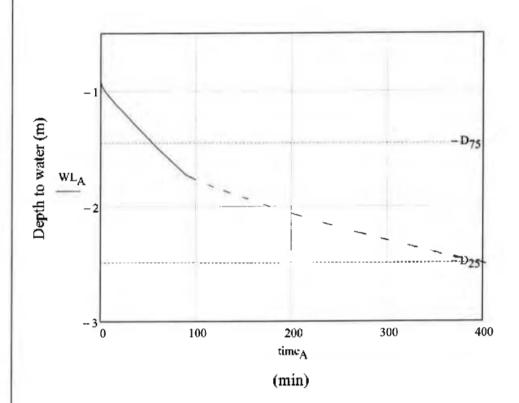
Þ

Depths when trial pit is 75% and 25% full

 $D_{75} = 1.447 \,\mathrm{m}$

 $D_{25} = 2.482 \,\mathrm{m}$

Þ


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 8.831 \, \text{m}^2$$

$$V_{75_25} = 869.4L$$

Time when trial pit is 75% full

$$\mathsf{t}_{75A} \coloneqq 54 \mathsf{min}$$

Time when trial pit is 25% full

$$t_{25A} := 400min$$
 (extrapolated)

$$f_A = 4.7 \times 10^{-6} \cdot m \cdot s^{-1}$$

RSA GEOTECHNICS LTD

Trial Pit Number TP205, Test 1, 3.00m

Trial Pit Length

 $L_{\text{max}} = 2.70 \text{ m}$

Trial Pit Width

W := 0.80 m

Trial Pit Depth

D := 3.00 m

Depth from ground level to water

level at start of the test

 $D_{\varsigma}:=1.40m$

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time (minutes) Water Levels (mbGL)

0	1.4
0.5	1.46
1	1.49
1.5	1.53
2	1.56
5	1.75
8	1.92
10	2.04
12	2.12
15	2.25
18	2.37
19	2.4

D

Þ

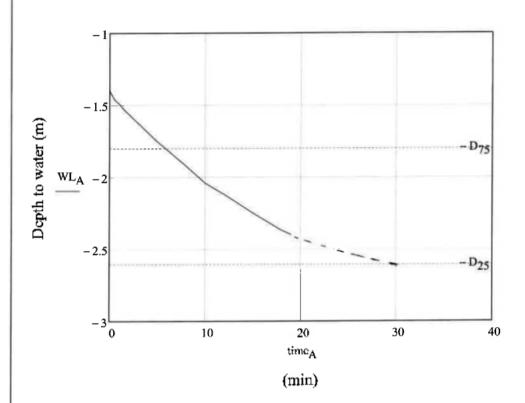
Depths when trial pit is 75% and 25% full

$$D_{75} = 1.8 \,\mathrm{m}$$

$$D_{25} = 2.6 \,\mathrm{m}$$

Date: 31/08/2022 Calcs:JMK. Checked:GJB.

Ð


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 7.76 \, m^2$$

$$V_{75_25} = 725.76L$$

Time when trial pit is 75% full

$$t_{75A} := 6min$$

Time when trial pit is 25% full

$$t_{25A} := 30min$$
 (extrapolated)

$$f_A = 6.5 \times 10^{-5} \cdot \text{m·s}^{-1}$$

Trial Pit Number TP205, Test 2, 3.00m

Trial Pit Length

 $L_{\infty} = 2.70 \text{m}$

Trial Pit Width

 $W_{\star} = 0.80 \text{m}$

Trial Pit Depth

D := 3.00m

Depth from ground level to water

level at start of the test

 $D_s := 1.20m$

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time (minutes) Water Levels (mbGL)

0	1.2
0.25	1.3
0.5	1.33
1	1.39
1.5	1.42
2	1.45
2.5	1.49
3	1.52
4	1.58
5	1.63
7	1.74
9	1.85
11	1.95
13	2.03
15	2.11
17	2.19
20	2.29
22	2.35
25	2.44
28	2.53
29	2.55

Þ

D

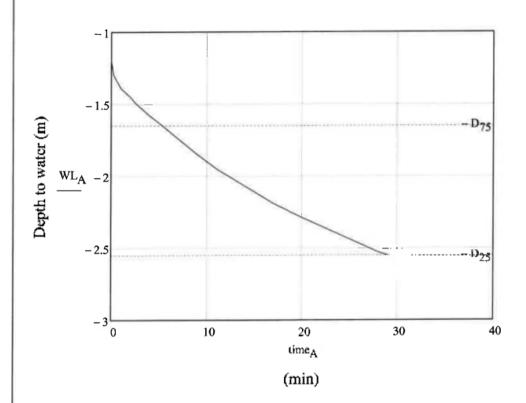
Depths when trial pit is 75% and 25% full

$$D_{75}=1.65\,\mathrm{m}$$

$$D_{25} = 2.55 \,\mathrm{m}$$

Date: 31/08/2022 Calcs:JMK. Checked:GJB.

RSA GEOTTECHNICS LITE


Þ

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 8.46 \, m^2$$

$$V_{75_25} = 816.48L$$

Time when trial pit is 75% full

$$t_{75\Lambda} := 5min$$

Time when trial pit is 25% full

$$\mathfrak{t}_{25\mathrm{A}} \coloneqq 29\mathrm{min}$$

Soil Infiltration Rate

$$f_A = 6.7 \times 10^{-5} \text{ m} \cdot \text{s}^{-1}$$

Date: 31/08/2022 Calcs:JMK. Checked:GJB.

Trial Pit Number TP205, Test 3, 3.00m

Trial Pit Length

 $L_{\infty} = 2.70 \text{m}$

Trial Pit Width

W := 0.80 m

Trial Pit Depth

D := 3.00m

Depth from ground level to water

level at start of the test

 $D_s := 1.20 m$

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time (minutes) Water Levels (mbGL)

(minotoo)	()
0	1.2
0.25	1.29
0.5	1.33
1	1.37
1.5	1.41
2	1.44
2.5	1.46
3	1.49
4	1.54
5	1.58
7	1.67
10	1.83
13	1.95
15	2.03
17	2.09
20	2.2
23	2.31
26	2.39
29	2.47
32	2.56

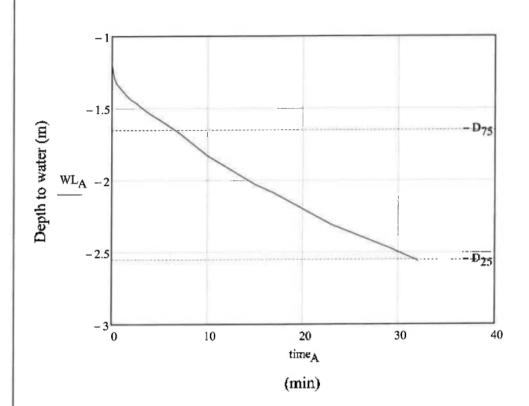
Þ

Þ

Depths when trial pit is 75% and 25% full

$$D_{75} = 1.65 \,\mathrm{m}$$

$$D_{25} = 2.55 \, \text{m}$$


Þ

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 8.46 \, m^2$$

$$V_{75_25} = 816.48 L$$

Time when trial pit is 75% full

$$t_{75A} := 6.5 min$$

Time when trial pit is 25% full

$$t_{25\mathrm{A}} \coloneqq 31.5\mathrm{min}$$

Soil Infiltration Rate

$$f_{\rm A} = 6.4 \times 10^{-5} \, {\rm m \cdot s}^{-1}$$

RSA GEOTECHNICS LITE

Trial Pit Number TP215, Test 1, 3.00m

Trial Pit Length Length Length Length

Trial Pit Width W := 0.80m

Trial Pit Depth D := 3.00m

Depth from ground level to water $D_8 := 1.00 m$ level at start of the test

Depth to natural groundwater level Dry

Porosity of gravel backfill n := 42% (assumed)

Time Water Levels (mbGL)

0	1
0.5	1.02
1	1.02
1.5	1.02
2	1.02
5	1.02
10	1.02
15	1.03
35	1.03
142	1.05
200	1.06
230	1.08
285	1.1
1330	1.3
1607	1.34
8481	1.85
9927	1.92
10290	1.93

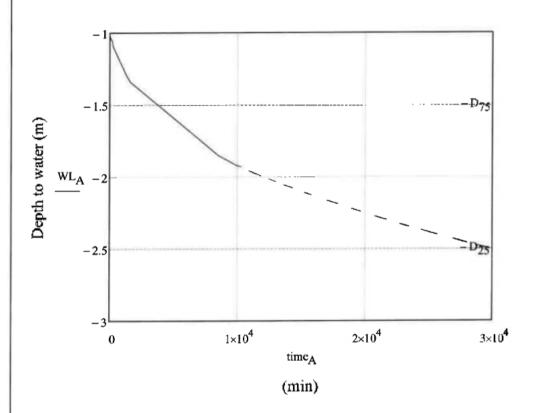
D.

D

Depths when trial pit is 75% and 25% full

 $D_{75} = 1.5 \,\mathrm{m}$ $D_{25} = 2.5 \,\mathrm{m}$

Þ


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 9.44 \,\mathrm{m}^2$$

$$V_{75_25} = 940.8L$$

Time when trial pit is 75% full

$$t_{75A} := 3836min$$

Time when trial pit is 25% full

 $t_{25A} := 30000min$ (extrapolated)

Soil Infiltration Rate

$$f_{\Lambda} = 6.3 \times 10^{-8} \cdot \text{m·s}^{-1}$$

RSA GEOTIEGHNUGS LITO

Trial Pit Number TP225, Test 1, 2.50m

Trial Pit Length

 $I_{xx} = 2.60 \text{m}$

Trial Pit Width

 $W_{*} = 0.80 \text{m}$

Trial Pit Depth

D := 2.50 m

Depth from ground level to water

Depth to natural groundwater level

 $D_8 := 0.83 m$

level at start of the test

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time (minutes) Water Levels

(mbGL)

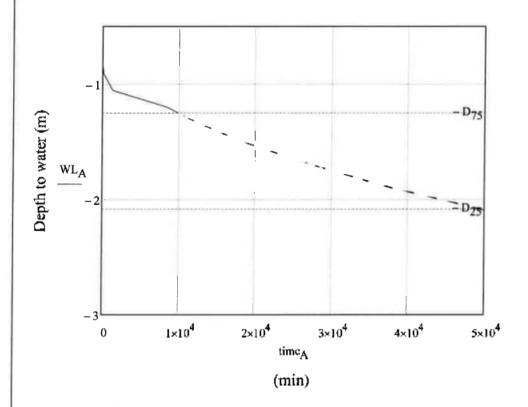
	(*****
0	0.83
0.5	0.83
1	0.83
1.5	0.83
2	0.84
5	0.84
10	0.84
15	0.85
35	0.86
56	0.86
85	0.87
120	0.91
1289	1.05
1573	1.06
8432	1.2
9868	1.25

Þ

Þ

Depths when trial pit is 75% and 25% full

$$D_{75} = 1.248 \,\mathrm{m}$$


$$D_{25} = 2.083 \, \text{m}$$

Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 7.758 \,\mathrm{m}^2$$

$$V_{75_25} = 729.4561.$$

Time when trial pit is 75% full

$$t_{75A} := 10000min$$

Time when trial pit is 25% full

$$t_{25A} := 50000min \text{ (extrapolated)}$$

Soil Infiltration Rate

$$f_A = 3.9 \times 10^{-8} \cdot \text{m·s}^{-1}$$

RSA GEOTTECHINICS LITE

Trial Pit Number TP235, Test 1, 2.50m

Trial Pit Length

 $l_{x} := 2.10 \text{m}$

Trial Pit Width

 $W_{c} = 0.80 \text{m}$

Trial Pit Depth

D := 2.50m

Depth from ground level to water

Depth to natural groundwater level

 $D_g := 0.85 \mathrm{m}$

level at start of the test

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time	
/minutes	í:

Water Levels (mbGL)

0	0.85
0.5	0.85
1	0.85
1.5	0.85
2	0.85
5	0.85
10	0.85
15	0.85
37	0.86
64	0.87
100	0.87
1236	0.95
1512	0.96
8640	1.35
10071	1.37

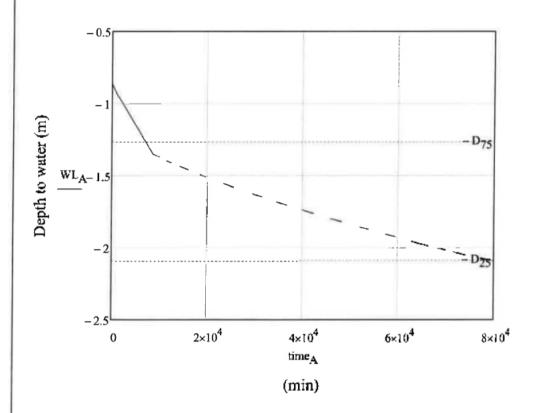
Þ

Depths when trial pit is 75% and 25% full

$$D_{75} = 1.262 \,\mathrm{m}$$

$$D_{25} = 2.087\,\mathrm{m}$$

RSA GEOTECHNICS LTD


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 6.465 \,\mathrm{m}^2$$

Þ

$$V_{75_25} = 582.121.$$

Time when trial pit is 75% full

$$t_{75A} := 7379min$$

Time when trial pit is 25% full

$$t_{25A} := 80000min$$
 (extrapolated)

Soil Infiltration Rate

$$f_{A} = 2.1 \times 10^{-8} \cdot \text{m·s}^{-1}$$

BRE Digest DG365 (2016)

Date: 31/08/2022 Calcs:JMK. Checked:GJB.

Trial Pit Number TP245, Test 1, 2.50m

Trial Pit Length

 $L_{\rm s} = 2.40 {\rm m}$

Trial Pit Width

W := 0.70 m

Trial Pit Depth

D := 2.50m

Depth from ground level to water

 $D_{\rm S} := 0.85 {\rm m}$

level at start of the test

Depth to natural groundwater level

Dry

Porosity of gravel backfill

n := 42% (assumed)

Time (minutes) Water Levels (mbGL)

0	1.21
0.5	1.21
1	1.21
2	1.21
5	1.21
10	1.21
15	1.21
48	1.22
65	1.22
1227	1.31
1552	1.32
8375	2.13
9807	2.18
444.	2.1.9

D

Ð

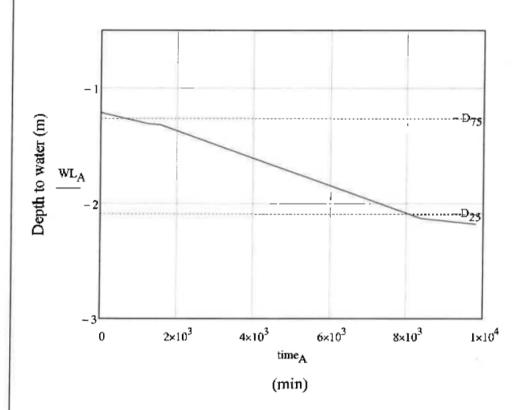
Depths when trial pit is 75% and 25% full

 $D_{75} = 1.262 \, \text{m}$

 $D_{25} = 2.087 \, m$

RSA GEOTTECHNICS LITE

Þ


Mean Surface Area for Outflow

Volume from 75% to 25% full

$$a_{p50} = 6.795 \,\mathrm{m}^2$$

$$V_{75_25} = 582.12L$$

Time when trial pit is 75% full

$$t_{75A} \coloneqq 670 \mathrm{min}$$

Time when trial pit is 25% full

$$t_{25A} := 8079min$$

Soil Infiltration Rate

$$f_A = 1.9 \times 10^{-7} \cdot \text{m} \cdot \text{s}^{-1}$$

PAGE 1 OF 6

RSA GEÓTIBGHINIGS LITO

Type of Test:	1st Return Visit	Date of Test:	30/09/2022

Location	Date of	Time of	Flow	Methane	Content	Carbon Dioxide	Oxygen		Other Gases (ppm)	Groundwater	Water Level
	Installation	Monitoring (hours)	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen Sulphide	Carbon Monoxide	Photoionisation Detector	Depth (mbgl)	(mAOD)
BH1	01/09/2022	1155	<0.1	0.1	2	1.3	20.0	<1	<1	-	DRY	
BH2	22/09/2022	1130	0.1	0.2	4	0.5	20.0	<1	<1	-	DRY	
вн3	27/09/2022	1210	<0.1	0.1	2	0.2	20.7	<1	<1	-	DRY	
WS4	10/08/2022	1145	<0.1	0.1	2	0.4	20.7	<1	<1	-	DRY	
WS5	10/08/2022	1140	<0.1	0.2	4	0.6	20.5	<1	<1	-	2.70	

Notes:

1% by volume = 10000 ppm

1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	0900	7	1008	Falling	Fog	Weather records are not site specific but have been
Cool, overcast, dry, calm	1300	14	1005	Falling	Mostly cloudy	approximately interpolated from local information
	1700	14	1002	Falling	Light rain	

Project

Project No: 16118SI

LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK

OCTOBER 2022 Date:

PAGE 2 OF 6

Type of Test: 2nd Return Visit Date of Test: 11/10/2022

	Time of	Flow	ivietnane	Content	Carbon Dioxide	Oxygen		Other Gases (ppm)		Groundwater	Water Level
Installation	Monitoring (hours)	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen Sulphide	Carbon Monoxide	Photoionisation Detector	Depth (mbgl)	(mAOD)
01/09/2022	1330	-0.2	0.1	2	0.6	20.1	<1	<1	-	DRY	
22/09/2022	1305	<0.1	0.2	4	0.3	20.6	<1	<1	-	DRY	
27/09/2022	1345	0.1	0.1	2	0.2	20.4	<1	<1	-	DRY	
10/08/2022	1325	-0.1	0.1	2	0.3	20.1	<1	<1	-	DRY	
10/08/2022	1315	-0.1	0.1	2	0.5	20.1	<1	<1	-	2.76	
	01/09/2022 22/09/2022 27/09/2022 10/08/2022	(hours) 01/09/2022 1330 22/09/2022 1305 27/09/2022 1345 10/08/2022 1325	(hours) 01/09/2022 1330 -0.2 22/09/2022 1305 <0.1	(hours) 01/09/2022 1330 -0.2 0.1 22/09/2022 1305 <0.1	(hours) 01/09/2022 1330 -0.2 0.1 2 22/09/2022 1305 <0.1	(hours) 01/09/2022 1330 -0.2 0.1 2 0.6 22/09/2022 1305 <0.1	(hours) 01/09/2022 1330 -0.2 0.1 2 0.6 20.1 22/09/2022 1305 <0.1	(hours) Sulphide 01/09/2022 1330 -0.2 0.1 2 0.6 20.1 <1	(hours) Sulphide 01/09/2022 1330 -0.2 0.1 2 0.6 20.1 <1	(hours) (hours) Sulphide Detector 01/09/2022 1330 -0.2 0.1 2 0.6 20.1 <1	(hours) (hours) Sulphide Detector 01/09/2022 1330 -0.2 0.1 2 0.6 20.1 <1

1% by volume = 10000 ppm 1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	0900	7	1028	Steady	Sunny, light winds	Weather records are not site specific but have been
Cool, sunny, dry, calm	1300	14	1028	Falling	Sunny, light winds	approximately interpolated from local information
	1700	13	1026	Steady	Sunny intervals	

Project

Project No: 16118SI

OCTOBER 2022 Date:

PAGE 3 OF 6

HEAD REPUBLISHED VEH

Type of Test: 3rd Return Visit 17/10/2022

Date of	Time of	Flow	Methane	Content	Carbon Dioxide	Oxygen		Other Gases (ppm))	Groundwater	Water Level
Installation	Monitoring (hours)	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen Sulphide	Carbon Monoxide	Photoionisation Detector	Depth (mbgl)	(mAOD)
01/09/2022	1310	-0.1	0.1	2	0.1	20.5	1	<1	-	DRY	
22/09/2022	1225	-0.1	0.1	2	0.4	20.1	<1	<1	-	DRY	
27/09/2022	12.10	-0.3	0.2	4	0.2	20.5	<1	<1	-	DRY	
10/08/2022	1250	0.1	0.1	2	0.2	20.3	<1	<1	-	DRY	
10/08/2022	1235	-0.2	0.1	2	0.4	20.0	<1	<1	-	2.78	
	01/09/2022 22/09/2022 27/09/2022 10/08/2022	(hours) 01/09/2022 1310 22/09/2022 1225 27/09/2022 12.10 10/08/2022 1250	(hours) 01/09/2022 1310 -0.1 22/09/2022 1225 -0.1 27/09/2022 12.10 -0.3 10/08/2022 1250 0.1	(hours) 0.1 0.1 22/09/2022 1310 -0.1 0.1 22/09/2022 1225 -0.1 0.1 27/09/2022 12.10 -0.3 0.2 10/08/2022 1250 0.1 0.1	(hours) 01/09/2022 1310 -0.1 0.1 2 22/09/2022 1225 -0.1 0.1 2 27/09/2022 12.10 -0.3 0.2 4 10/08/2022 1250 0.1 0.1 2	(hours) 0.1 2 0.1 22/09/2022 1225 -0.1 0.1 2 0.4 27/09/2022 12.10 -0.3 0.2 4 0.2 10/08/2022 1250 0.1 0.1 2 0.2	(hours) 0.1 2 0.1 20.5 22/09/2022 1225 -0.1 0.1 2 0.4 20.1 27/09/2022 12.10 -0.3 0.2 4 0.2 20.5 10/08/2022 1250 0.1 0.1 2 0.2 20.3	(hours) Sulphide 01/09/2022 1310 -0.1 0.1 2 0.1 20.5 1 22/09/2022 1225 -0.1 0.1 2 0.4 20.1 <1	(hours) Sulphide 01/09/2022 1310 -0.1 0.1 2 0.1 20.5 1 <1	(hours) (hours) Sulphide Detector 01/09/2022 1310 -0.1 0.1 2 0.1 20.5 1 <1	(hours) (hours) Sulphide Detector 01/09/2022 1310 -0.1 0.1 2 0.1 20.5 1 <1

Notes:

1% by volume = 10000 ppm

1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	0900	15	1014	Rising	Light rain	Weather records are not site specific but have been
Cool, cloudy, damp, calm	1300	16	1017	Rising	Light rain	approximately interpolated from local information
	1700	17	1020	Rising	Sunny	

Project

Project No: 16118SI

LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK

Date: OCTOBER 2022

PAGE 4 OF 6

RSA GEOTTECHNICS 1570

Type of Test: 4th Return Visit 20/10/2022

Location	Date of	Time of	Flow	Methane	Content	Carbon Dioxide	Oxygen		Other Gases (ppm)		Groundwater	Water Level
	Installation	Monitoring	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen	Carbon Monoxide	Photoionisation	Depth (mbgl)	(mAOD)
		(hours)						Sulphide		Detector		
BH1	01/09/2022	1225	<0.1	0.1	2	1.8	19.9	<1	2	-	DRY	
BH2	22/09/2022	1155	0.1	0.1	2	1.9	19.2	<1	1	-	DRY	
вн3	27/09/2022	1210	0.2	0.1	2	1.3	20.1	<1	1	-	DRY	
WS4	10/08/2022	1140	<0.1	0.1	2	0.3	20.6	<1	2	-	DRY	
WS5	10/08/2022	1125	<0.1	0.1	2	0.4	20.5	<1	2	-	2.43	
,												

Notes:

1% by volume = 10000 ppm

1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	0900	14	1008	Falling	Light rain showers	Weather records are not site specific but have been
Cool, overcast, wet, breezy	1300	15	1006	Falling	Light rain showers	approximately interpolated from local information
	1700	15	1005	Steady	Drizzle	

Project

Project No: 16118SI

LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK

Date: OCTOBER 2022

PAGE 5 OF 6

RSA GEOTIBEHNIGS LITO

Type of Test: 5th Return Visit Date of Test: 24/10/2022

Location	Date of	Time of	Flow	Methane	Content	Carbon Dioxide	Oxygen		Other Gases (ppm)		Groundwater	Water Level
	Installation	Monitoring (hours)	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen Sulphide	Carbon Monoxide	Photoionisation Detector	Depth (mbgl)	(mAOD)
BH1	01/09/2022	1130	<0.1	0.2	4	0.3	20.5	<1	<1	-	DRY	
BH2	22/09/2022	1210	-0.1	0.1	2	0.3	20.2	<1	<1	-	DRY	
вн3	27/09/2022	1220	-0.2	0.1	2	0.2	20.4	<1	1	-	DRY	
WS4	10/08/2022	1155	-0.1	0.1	2	0.3	19.8	<1	<1	-	DRY	
WS5	10/08/2022	1146	<0.1	0.1	2	0.4	20.0	<1	<1	-	2.46	

1% by volume = 10000 ppm 1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	1200	15	1003	Steady	Sunny intervals	Weather records are not site specific but have been
Cool, cloudy, damp, breezy	1400	16	1003	Steady	Sunny intervals	approximately interpolated from local information
	1700	15	1004	Steady	Sunny intervals	

Project

Project No: 16118SI

LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK

OCTOBER 2022 Date:

PAGE 6 OF 6

Type of Test: 6th Return Visit Date of Test: 28/10/2022

Location	Date of	Time of	Flow	Methane	e Content	Carbon Dioxide	Oxygen		Other Gases (ppm)		Groundwater	Water Level
	Installation	Monitoring (hours)	(litres/hr)	(% v/v)	(% LEL)	(% v/v)	(% v/v)	Hydrogen Sulphide	Carbon Monoxide	Photoionisation Detector	Depth (mbgl)	(mAOD)
BH1	01/09/2022	1540	<0.1	0.1	2	0.5	20.1	<1	1	-	DRY	
BH2	22/09/2022	1445	-0.1	0.1	2	0.7	19.5	<1	<1	-	DRY	
внз	27/09/2022	1435	-0.1	0.1	2	0.2	20.2	<1	<1	-	DRY	
WS4	10/08/2022	1520	<0.1	0.1	2	0.4	20.0	<1	<1	-	DRY	
WS5	10/08/2022	1455	0.1	0.1	2	0.5	19.6	<1	<1	-	2.86	

1% by volume = 10000 ppm 1% LEL = 520 ppm 1 cm³/min = 0.06 l/hr

Weather conditions as observed at time of monitoring:	Time (hours)	Air Temperature (°C)	Barometric Pressure (mb)	Trend in Barometric Pressure	Weather	Remarks
	0900	16	1012	Rising	Light cloud	Weather records are not site specific but have been
Cool, sunny/cloudy, dry, breezy	1300	17	1015	Rising	Sunny intervals	approximately interpolated from local information
	1700	16	1017	Rising	Sunny intervals	

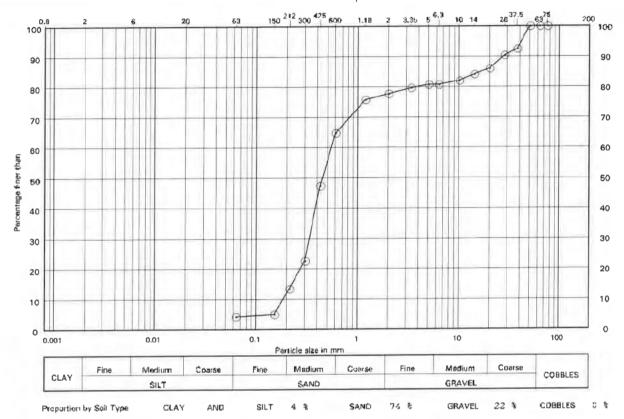
Project

Project No: 16118SI

LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK

OCTOBER 2022 Date:

RSA GEOTECHNICS LTD


TELEPHONE (01449) 723 723

DATE OF ISSUE 04/11/22 PAGE of

DETERMINATION OF THE PARTICLE SIZE DISTRIBUTION Not UKAS Accredited

RSA GEOTTECHNICS LITE Size (mm) Size (microns) 63 150 212 300 425 600 .18 2 3.35 5 6.3 10 14 20 28 37.5 50 63 75 Sieve Size 5 | 13 | 23 | 47 | 65 | 76 | 78 | 80 | 81 | 81 | 82 | 84 | 86 | 90 | 92 | 100 | 100 | 100 Percentage by Mass passing Sieve

Sample Description

Soil Type

Very dense orange brown slightly silty medium-coarse SAND with occasional subrounded-subangular fine coarse flint gravel (Lowestof: Formation)

LP

Method of Test Wet Sieve

METHOD OF PREPARATION BS 1377-1: 2016: 8,9

METHOD OF TEST

BS1377:Part 2:1990: 9.2

REMARKS

Result not determined where entry is blank.

Project

LAND NORTH OF HUMBER DOUCY, IPSWICH

Hole No

BR1 Sample Ref

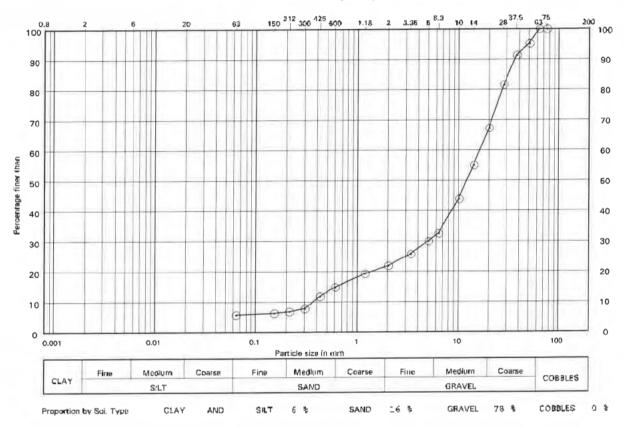
Depth

11.50 - 11.95 m

Specimen Location

11,50 - 11.95 m

Level Job No


16118SI

RSAR2M

RSA GEOTECHNICS LTD

DETERMINATION OF THE PARTICLE SIZE DISTRIBUTION

	I	RSA	GE	ışs OT	REI SUED BY ECH (01445	, N	C	S		D											C	RSA GEOTTE	>
DET		ISSUE		4/11/ 'HE F		ıcı	Æ		PA Œ I			of RIB	UT	10	N								
	 			Not UK	(AS Ac	cred	ited									_		_		_	_	0	_
				Size (n	nicrons	}											Siz	e (n	nm)				
Sieve Size					63	150	212	300	425	600	1.18	2	3.35	5	6.3	10	14	20	28	37.5	50	63	75
Percentage by Mass passing Sieve					6	6	7	6	12	15	19	22	26	30	33	44	55	67	82	91	96	100	100

Sample Description

Soil Type

Very dense orange brown silty sandy subrounded-subangular fine coarse flint GRAVRI. (Lowestoft Formation)

 LP

Method of Test Wet Sieve

METHOD OF PREPARATION BS 1377-1: 2016: 8,9

METHOD OF TEST

BS1377:Part 2:1990: 9.2

REMARKS

Result not determined where entry is blank.

Project

LAND NORTH OF HUMBER DOUCY, IPSWICH

Hole No

Sample Ref

D4

Depth

3.00 - 5.00 m

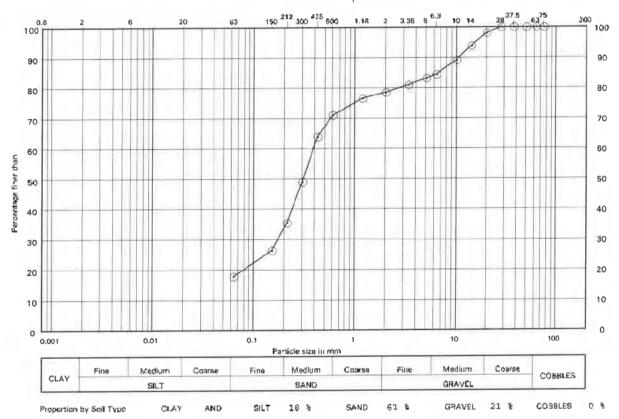
Specimen Location

3H1

3.00 - 5.00 m

Level Job No

16118SI


RSAR2M

RSA GEOTECHNICS LTD

DETERMINATION OF THE PARTICLE SIZE DISTRIBUTION

		RS	SA	EST ISS GEOT ELEPHONE	ECH	/ Ni	C	S I	LTI	D										Ç	RSA GÉ∲VI∃0	>
DET		OF ISS		04/11/ F THE J	PART	ici	.E :	SIZ	PAC			of RIB	UT	10	N							
	-				KAS Ac		ited										Siz	e (r	nm)		0	
Sieve Size				3126 [1			212	300	425	600	1.18	2	3.35	5	6,3	10	14	20		50	63	75
Percentage by Mass passing Sieve					18				64		77	79	81	B3	84	89	94	98				

Sample Description

Soil Type

Medium dense orange brown silty fine-coarse SAND with occasional subrounded subangular fine-coarse flint gravel, rare fine-medium gravel sized quartzite gravel and fine-medium gravel size pockets of soft brown silty sandy clay (Lowestoft Pormation)

LF

Method of Test Wet Sieve

METHOD OF PREPARATION BS 1377-1: 2016: 8,9

METHOD OF TEST

BS1377:Part 2:1990: 9.2

REMARKS

Regult not determined where entry is blank.

Project

LAND NORTH OF HUMBER DOUCY, IPSWICH

Hole No 3H2 Sample Ref

U3

Depth

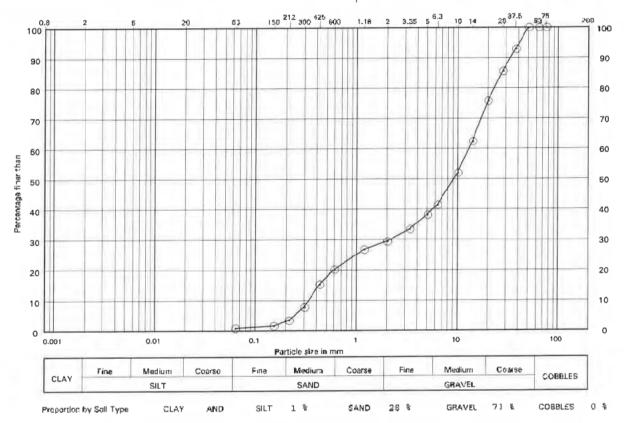
5.50 - 5.95 m

Specimen Location

5.50 - 5.95 m

Level Job No

16118SI


RSAH2M

RSA GEOTECHNICS LTD

DETERMINATION OF THE PARTICLE SIZE DISTRIBUTION

	R	SA	EST I	JED BY	, INI	CS	S I	_TI	D											<	RSA GEOTE	>
	DATE OF ISS		04/11/2		ורו	E		PAC			of NR	ırt	ıo	N.							olt soinhoel	
DETE	ERIVINATIO	M O	Not UK	AS Ac	cred	ited	312		713		·IID	vi		141							ø	
			Size (m	icrons)	,											Siz	e (n	nm)				
Sieve Size				63	150	212	300	425	600	.18	2	3.35	5	6.3	10	14	20	28	37.5	50	63	75
Percentage by Mass passing Sieve				1	2	3	в	15	20	27	29	33	38	41	52	62	76	86	93	100	100	100

Sample Description

Soil Type

Very dense orange brown slightly silty sandy subrounded-subangular fine-coarse flint GRAVEL with rare subrounded-rounded fine-medium quartzite gravel (Lowestoft Formation)

J.F

Method of Test Wet Sieve

METHOD OF PREPARATION BS 1377-1: 2016: 8,9

METHOD OF TEST

B\$1377:Part 2:1990: 9.2

REMARKS

Result not determined where entry is blank.

Project

LAND NORTH OF HUMBER DOUCY, IPSWICH

Hole No

BH3 Sample Ref B1

Depth

7,00 - 7.45 m

Specimen Location

7.00 - 7.45 m

Level

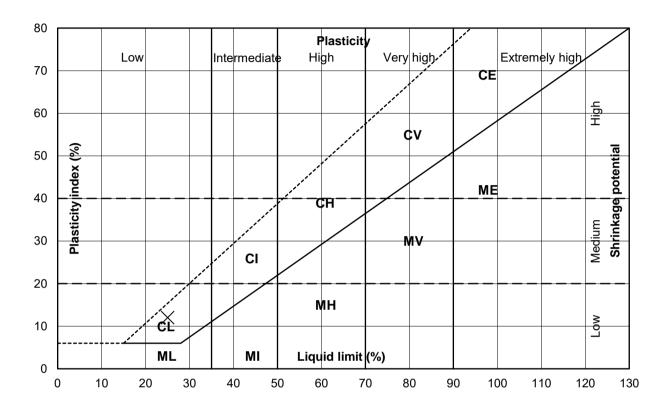
Job Na 1611851

RSA GEOTTECHNIGS LITE

SUMMARY OF CLASSIFICATION TESTING

BS1377: Part 1 1990: Clause 7.3 and 7.4 and Part 2 1990: Clause 3.2, 4.4, 5 and 6.5

Project	16118	SI - Land	l North c	of Humbe	er Doucy	/ Lane, I _l	pswich							Report number 16118SI
Location	Sample type	Sample number	Depth - top (m)	Depth - base (m)			limit	Liquid limit (wL %)		shrinkage	Particle density (Mg/m³)	Prep method	Drying temp (°C)	Description
BH1	D	2		1.00	79	14.0	13	25	12			Wet sieve		Firm orange brown silty sandy CLAY with a little subrounded- subangular fine-coarse flint gravel (Lowestoft Formation)


RSA GEOTTECHNICS LITO

LABORATORY TEST RESULTS

PLASTICITY CHART

BS1377: Part 2: 1990: Clause 4.4 and 5

Project	16118SI - Land North of Humber Doucy Lane,	Report number	16118SI
	lpswich		

COMMENTS

Shrinkage potential taken from NHBC Standards - Chapter 4.2, Clause 4.2 - D5, Table 1. Plasticity chart taken from BS5930: Clause 41, Figure 31.

SA GEOTTECHINICS ISTO

SUMMARY OF STRENGTH TESTING

BS1377: Part 7: 1990: Clause 7*

Project	Land North of Humber Doucy Lane, Ipswich										Report Number 16118SI				
Location	Sample Type	Sample Number	Depth - Top (m)	Depth - Base (m)	Test Method	Bulk Density (Mg/m³)	Moisture Content - Top (w%)		Pressure	Deviator Stress (kN/m²)	Strength	Vane Size (mm)	Shear Vane - Top (kN/m²)	Shear Vane - Bottom (kN/m²)	Description
BH2	UT	1	1.50	1.95	Ts	2.19		14.5	50	629	315				Very stiff very high strength light orange-brown and light grey slightly sandy silty CLAY with occasional subrounded-subangular fine-coarse chalk and flint gravel and rare rootlets (Lowestoft Formation)
BH2	UT	2	3.50	3.95	Ts	2.23		14.3	80	387	194				Very stiff very high strength light orange-brown and light grey slightly sandy silty CLAY with occasional subrounded-subangular fine-coarse chalk and flint gravel and rare rootlets (Lowestoft Formation)
ВН3	UT	1	1.50	1.95	Ts	2.19		14.2	50	729	365				Very stiff very high strength orange-brown and brown slightly sandy silty CLAY with occasional subrounded-subangular fine-coarse chalk and flint gravel, rare pockets of black silt (Lowestoft Formation)
ВН3	UT	2	3.50	3.95	Ts	2.19		15.5	80	353	177				Very stiff very high strength orange-brown and brown slightly sandy silty CLAY with occasional subrounded-subangular fine-coarse chalk and flint gravel, rare pockets of black silt (Lowestoft Formation)

5

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract	Land North of Hum	ber Doucy Lane, Ipswich
Serial No.	41296_1	
Ashb 1 Ma	Geotechnics Ltd urnham House uitland Road Iham Market INZ	Soil Property Testing Ltd 15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG
Samples Label	Geotechnics Ltd lled: I North of Humber Doucy	Approved Signatories: J.C. Garner B.Eng (Hons) FGS Technical Director & Quality Manager W. Johnstone Materials Lab Manager
Date Receive	ed: 19/08/2022	Samples Tested Between: 19/08/2022 and 02/09/2022
Your	the attention of Phil Gaw Reference No: 16118SI Order No: LAB/0237/JM	
Notes:	1 All remaining samples of unless we are notified t	or remnants from this contract will be disposed of after 21 days from today, to the contrary.
	3 Tests marked "NOT UKA	AS ACCREDITED" in this test report are not included in the UKAS Accreditation
	Schedule for this testing This test report may no issuing laboratory.	g laboratory. It be reproduced other than in full except with the prior written approval of the

The results within this report only relate to the items tested or sampled.

TP18

D

3

1.10

1

1 1

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract Land North of Humber Doucy Lane, Ipswich Serial No. **Target Date** 41296_1 02/09/2022 **RSA Geotechnics Ltd** Scheduled By Schedule Remarks st John Control of the Control of th AND THE PROPERTY OF THE PROPER Bore Sample Тор Hole Type Ref. Depth No. Sample Remarks 0.70 1 TP1 D 2 1 1 1 TP1 D 3 1.00 1 TP1 D 4 1.50 1 TP1 D 5 2.00 D 6 2.60 1 TP1 TP1 D 7 3.00 1 TP10 D 1 0.60 1 1 TP10 D 2 1.10 1 1 3 1.70 1 1 1 **TP10** D TP10 4 2.20 1 1 TP10 D 5 2.90 1 TP12 D 1 0.70 1 TP12 1.20 D 2 1 1 TP12 D 3 1.50 1 1 1 TP12 D 4 2.20 1 TP12 D 2.90 1 TP13 D 2 0.50 1 TP13 D 3 1.00 1 1 **TP13** D 4 1.80 1 1 TP13 5 2.40 D 1 1 TP13 1 D 6 3.00 D 1 0.40 1 TP15 D 2 1.10 1 1 1 TP15 D 3 1.60 1 1 TP15 D 4 2.20 TP15 D 2.80 1 **TP17** D 2 0.40 1 TP17 D 3 0.80 1 1 TP17 D 4 1.50 1 1 1 TP17 D 5 2.00 1 TP17 D 6 2.50 1 D 2 1 TP18 0.60 1

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract Land N					and North of Humber Doucy Lane, Ipswich														
Serial	No.		41296	1												Tar	get	Date	02/09/2022
Sched	uled E	Ву	RSA Ge	ote	chr	ics	Ltd												
Sched	ule Re	emarks																	
Bore Hole No.	Туре	Sample Ref.	Top Depth	/20	Nate:	orter	e Contraction	a de de de de de de de de de de de de de	line /	ige/	//								Sample Remarks
TP18	D	4	1.80	1	,	/_\					1.1.1								
TP18	D	5	2.50	1				1.1											
TP18	D	6	2.90	1	T		11	Trilli.											
TP5	D	1	0.65	1		1	1												
TP5	D	2	0.95	1	7		i Ŧ i	H		Ī			1					11	
TP5	D	3	1.70	1	1	11	1-3	litt.		Ī	П								
TP5	D	4	2.30	1															
TP5	D	5	2.90	1	1			1-1											
WS2	D	2	0.50	1	Ξ	1		ЫĒ	E				1 -			1			
WS2	D	3	0.90	1	1		I	111								ji ji			
WS2	D	4	1.70	1	77	1	1		4 1										
WS2	D	5	2.50	1	.1	11		1:11								1		11	
WS2	D	6	2.90	1															
WS8	D	2	0.50	1			H	Tall I											
WS8	D	3	0.90	1															
WS8	D	4	1.40	1	T	1	1			1	Ш		1 =						
WS8	D	5	1.90	1	1	141	15	JELLE		10	Н						111		
WS8	D	6	2.40	1															
WS8	D	7	2.90	1				Ħ											
		Totals		52	9	11	11	12											End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

nggg

Contract	Land North of Humber Doucy Lane, Ipswich
Serial No.	41296_1

SUMMARY OF WATER CONTENT

Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Description	Remarks
TP1	0.70	D	2	13.9	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular and subangular chert	
TP1	1.00	D	3	10.6	Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chert and chalk	
TP1	1.50	D	4	12.3	Very stiff olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots, Gravel is fine and medium angular to subrounded chalk and chert	
TP1	2.00	D	5	14.8	Yellow SILT/CLAY with rare fine chalk gravel	
TP1	2.60	D	6	9.7	Brownish yellow slightly sandy gravelly silty CLAY. Gravel is fine to coarse angular to rounded chert, chalk and quartzite	1955.3g submitted - insufficient material to be representative for test.*
TP1	3.00	D	7	8.1	Brown, black and white fine to coarse angular to rounded slightly clayey silty sandy chert and chalk GRAVEL. Sand is brownish yellow	1802.8g submitted - insufficient material to be representative for test.*
TP10	0.60	D	1	13.2	Hard olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP10	1.10	D	2	14.2	Very stiff mottled light grey and light olive grey slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP10	1.70	D	3	15.7	Stiff mottled orange, light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP10	2.20	D	4	15.6	Very stiff mottled light grey, orange and light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP10	2.90	D	5	17.2	Very stiff olive yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to rounded chalk	
TP12	0.70	D	1	8.9	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular and subangular chert	
TP12	1.20	D	2	9.9	Firm yellowish brown sandy silty CLAY with rare fine chert gravel	
TP12	1.50	D	3	18.6	Stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014

Type of Sample Key:

BS EN ISO: 17892-1: 2014
U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

*Mass required for max grain size of: 0.063mm = 30g, 2.0mm = 100g, 10.0mm = 500g, 31.5mm = 3000g, 63.0mm = 21000g

Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

0998

Contract	Land North of Humber Doucy Lane, Ipswich	
Serial No.	41296_1	

SUMMARY OF WATER CONTENT

Borehole /Pit No.	Depth (m)	Type	Ref.	Water Content (%)	Description	Remarks
TP12	2.20	D	4	16.7	Very stiff mottled orange, light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP12	2.90	D	5	16.0	Very stiff light olive brown slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk and chert	
TP13	0.50	D	2	7.7	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots, Gravel is fine and medium angular and subangular chert	
TP13	1.00	D	3	11.2	Hard mottled yellowish brown, light grey and olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP13	1.80	D	4	15.2	Very stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP13	2.40	D	5	15.4	Very stiff mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
TP13	3.00	D	6	20.2	Very stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to rounded chalk and chert	
TP15	0.40	D	1	12.2	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular and subangular chert	
TP15	1.10	D	2	12.4	Hard light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP15	1.60	D	3	15.7	Very stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP15	2.20	D	4	16.2	Very stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP15	2.80	D	5	15.8	Very stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP17	0.40	D	2	16.6	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular and subangular chert	
TP17	0.80	D	3	11.0	Hard mottled olive yellow and pale yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014

Type of Sample Key:

BS EN ISO: 17892-1: 2014
U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

nggg

Contract	Land North of Humber Doucy Lane, Ipswich	
Serial No.	41296_1	

SUMMARY OF WATER CONTENT

Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Description	Remarks
TP17	1.50	D	4	14.4	Hard olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP17	2.00	D	5	16.7	Very stiff mottled light grey and brownish yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP17	2.50	D	6	15.0	Very stiff mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
TP18	0.60	D	2	14.5	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular and subangular chert	
TP18	1.10	D	3	12.8	Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP18	1.80	D	4	16.9	Very stiff mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to rounded chalk and chert	
TP18	2.50	D	5	16.8	Very stiff mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to rounded chalk and chert	
TP18	2.90	D	6	16.4	Very stiff mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to rounded chalk and chert	
TP5	0.65	D	1	10.0	Hard olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP5	0.95	D	2	14.0	Hard mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP5	1.70	D	3	15.9	Very stiff mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
TP5	2.30	D	4	15.8	Very stiff mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
TP5	2.90	D	5	16.0	Very stiff mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS2	0.50	D	2	14.8	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular and subangular chert	

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 BS EN ISO: 17892-1: 2014

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

0998

Contract	Land North of Humber Doucy Lane, Ipswich	
Serial No.	41296_1	i i

SUMMARY OF WATER CONTENT

Borehole /Pit No.	Depth (m)	Type	Ref.	Water Content (%)	Description	Remarks
WS2	0.90	D	3	11.9	Hard brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to rounded chalk and chert	
WS2	1.70	D	4	11.8	Hard mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS2	2.50	D	5	14.8	Very stiff mottled olive yellow and yellowish brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS2	2.90	D	6	13.1	Firm brownish yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse angular to rounded chalk and chert	
WS8	0.50	D	2	8.3	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular and subangular chert	
WS8	0.90	D	3	15.8	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular and subangular chert	
WS8	1.40	D	4	14.0	Very stiff light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS8	1.90	D	5	18.2	Stiff brownish yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk	
WS8	2.40	D	6	16.6	Firm yellowish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk and chert	
WS8	2.90	D	7	18.0	Stiff olive yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium rounded to subangular chalk	
ethod Of F			10.00	17892-1: 3		

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 BS EN ISO: 17892-1: 2014

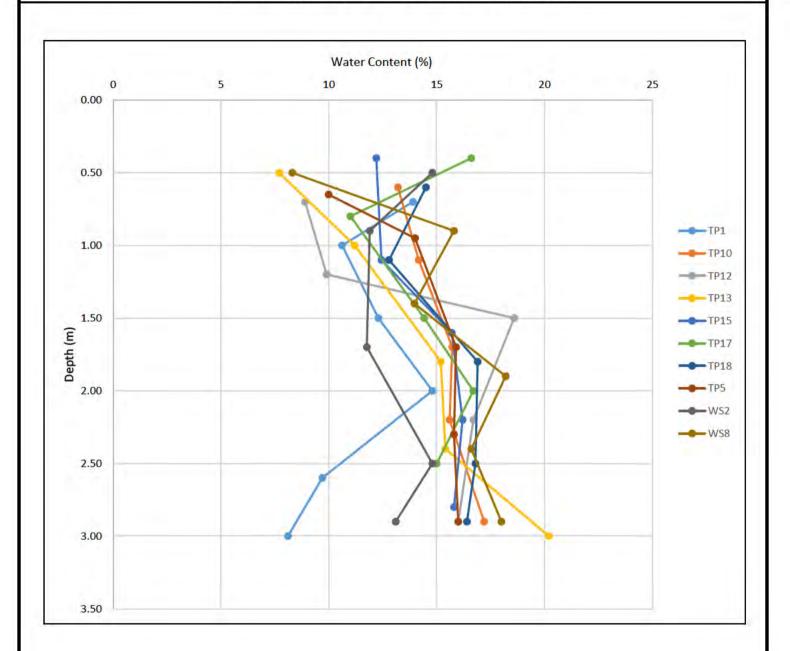
Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

Remarks to Include:



ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract Land North of Humber Doucy Lane, Ipswich
Serial No. 41296_1

WATER CONTENT VS DEPTH BELOW GROUND LEVEL

Method of Preparation: BSEN ISO 17892-1: 2014
Method of Test: BSEN ISO 17892-1: 2014

Type of Sample Key: U - Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within

original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract	Land North of Humber Doucy Lane, Ipswich								
Serial No.	41296_1								

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

100	400	2.77		Water	Liquid	Plastic	Plasti-	Liquid-	5		eparation			
Borehole /Pit No.	Depth (m)	Туре	Ref.	Content (%)	Limit (%)	Limit (%)	city Index (%)	ity Index	Method	Ret'd 0.425mm (%)	Corr'd W/C <0.425mm	Curing Time (hrs)	Description	Clas
TP1	1.00	D	3	10.6	40	15	25	-0.18	Wet Sieved	15 (M)	12.5*	28	Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chert and chalk	Ci
TP10	1.10	D	2	14.2	44	16	28	-0.07	Wet Sieved	11 (M)	15.9*	24	Very stiff mottled light grey and light olive grey slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP10	1.70	D	3	15.7	42	15	27	0.03	Wet Sieved	7 (M)	16.9*	24	Stiff mottled orange, light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP12	1.50	D	3	18.6	47	16	31	0.08	Wet Sieved	9 (M)	20.4*	27	Stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP13	1.80	D	4	15.2	38	15	23	0.01	Wet Sieved	11 (M)	17.1*	27	Very stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP15	1,10	D	2	12.4	43	15	28	-0.09	Wet Sieved	12 (M)	14.1*	25	Hard light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP17	1.50	D	4	14.4	39	16	23	-0.07	Wet Sieved	11 (M)	16.2*	93	Hard olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP18	1.10	D	3	12.8	43	16	27	-0.12	Wet Sieved	11 (M)	14.4*	96	Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI

Method Of Preparation: Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract	Land North of Humber Doucy Lane, Ipswich								
Serial No.	41296_1								

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

20.2 5.0	1	3.7	3.2	Water	Liquid	Plastic	Plasti-	Liquid-	5	ample Pr	eparation			
Borehole /Pit No.	Depth (m)	Туре	Ref.	Content (%)	Limit (%)	Limit (%)	city Index (%)	ity Index	Method	Ret'd 0.425mm (%)	Corr'd W/C <0.425mm	Curing Time (hrs)	Description	Class
TP5	0.65	D	1	10.0	37	15	22	-0.23	Wet Sieved	8 (M)	10.9*	96	Hard olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS2	1.70	D	4	11.8	36	15	21	-0.15	Wet Sieved	16 (M)	14.0*	92	Hard mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS8	1.40	D	4	14.0	45	16	29	-0.07	Wet Sieved	8 (M)	15.2*	93	Very stiff light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
			ĪĬ											
			Ħ											
ethod Of P				17892-1:		Ļ.							1	

Method Of Preparation: Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Type of Sample Key: Comments:

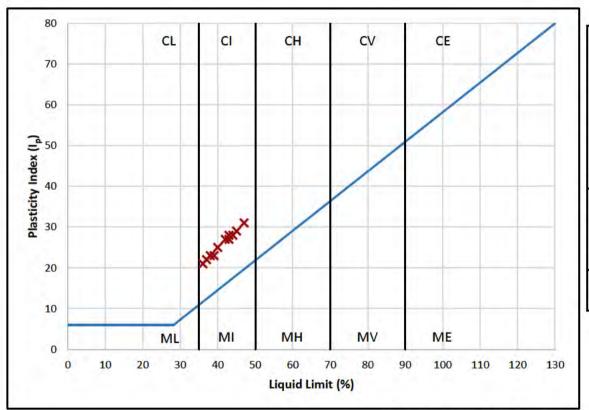
U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

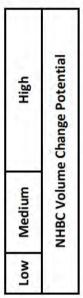
*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich

Serial No. 41296_1

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

		Plastic	ity	
Low	Medium	High	Very High	Extremely High

Plasticity Chart BS5930: 2015: Figure 8

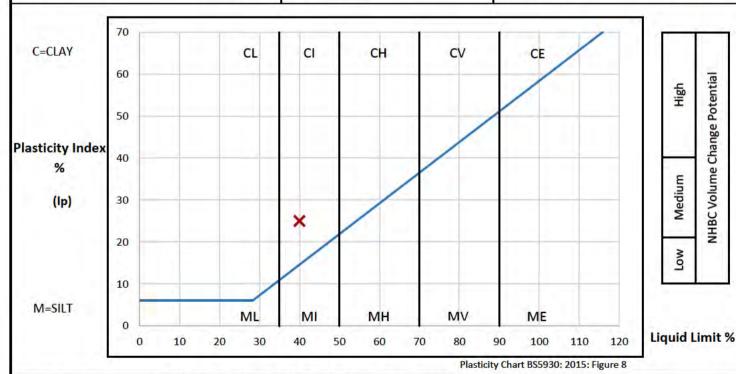
Method of Preparation: BS 1377: Part 2: 1990: 4.2

Method of Test: BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022


Contract Land North of Humber Doucy Lane, Ipswich

Serial No. 41296_1

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole / Pit No.	Depth	th Sample		Water Content	Description	Remarks
m Type Reference	Reference	(W) %				
TP1	1.00	D	3	10.6	Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chert and chalk	

	PREPARA	Liquid Limit	40 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	15 %
Sample retained 0.425mm si	eve (Mea	sured)	15 %	Plasticity Index	25 %
Corrected water content for	material passi	ng 0.425mm	12.5 %	Liquidity Index	-0.18
Sample retained 2mm sieve	(Mea	sured)	10 %	NHBC Modified (I'p)	21 %
Curing time	28 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

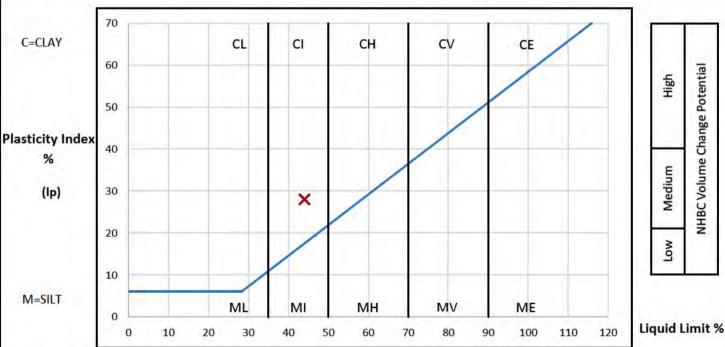
Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

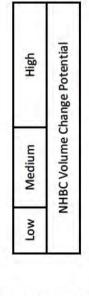
Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Pit No. Depth Sample		Water Content	Description	Remarks	
m Type Refe	Reference	(W) %				
TP10	1.10	D	2	14.2	Very stiff mottled light grey and light olive grey slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	Liquid Limit	44 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	16 %
Sample retained 0.425mm si	eve (Mea	sured)	11 %	Plasticity Index	28 %
Corrected water content for	material passi	ng 0.425mm	15.9 %	Liquidity Index	-0.07
Sample retained 2mm sieve	(Mea	sured)	9 %	NHBC Modified (I'p)	25 %
Curing time	24 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

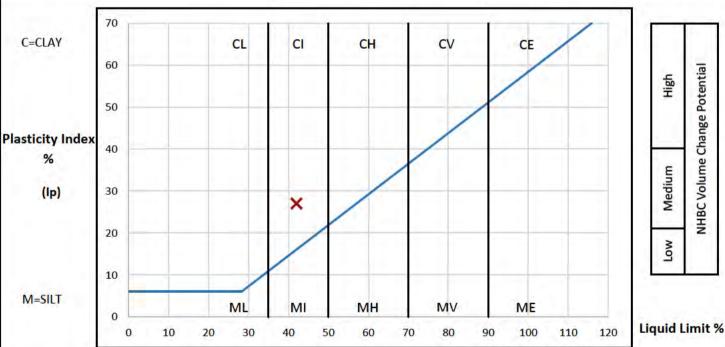
Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

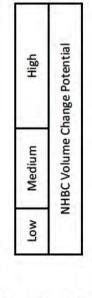
Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

Method of Test:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Depth	Sample		Water Content	Description	Remarks
	m	Туре	Reference	(W) %	1	
TP10	1.70	D	3	15.7	Stiff mottled orange, light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	Liquid Limit	42 %			
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	15 %
Sample retained 0.425mm sie	eve (Mea	sured)	7 %	Plasticity Index	27 %
Corrected water content for I	material passi	16.9 %	Liquidity Index	0.03	
Sample retained 2mm sieve	(Mea	sured)	4 %	NHBC Modified (I'p)	25 %
Curing time	24 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

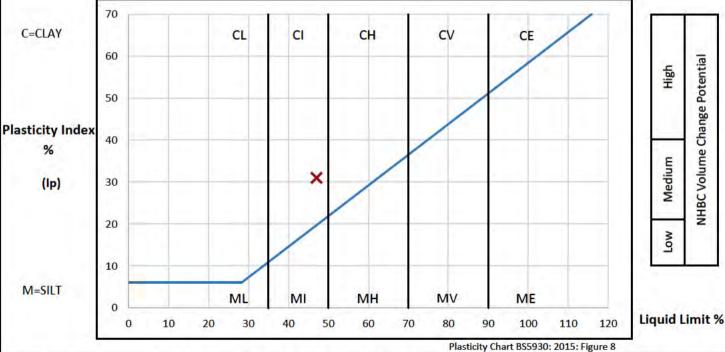
BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

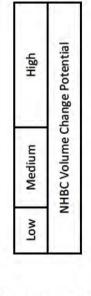
U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole / Pit No.	Depth	Sample		Water Content	Description	Remarks
	m	Туре	Reference	(W) %		
TP12	1.50	D	3	18.6	Stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	Liquid Limit	47 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	16 %
Sample retained 0.425mm s	ieve (Mea	sured)	9 %	Plasticity Index	31 %
Corrected water content for	material passi	ng 0.425mm	20.4 %	Liquidity Index	0.08
Sample retained 2mm sieve	(Mea	sured)	7 %	NHBC Modified (I'p)	28 %
Curing time	27 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

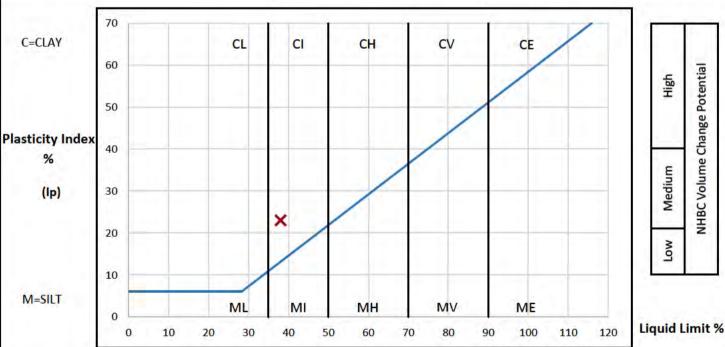
BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

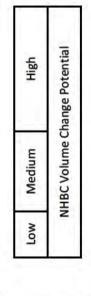
U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Depth	5	Sample	Water Content	Description	Remarks
	m	Туре	Reference	(W) %		1.000
TP13	1.80	D	4	15.2	Very stiff mottled light grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	Liquid Limit	38 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	15 %
Sample retained 0.425mm si	eve (Mea	sured)	11 %	Plasticity Index	23 %
Corrected water content for	material passi	ng 0.425mm	17.1 %	Liquidity Index	0.01
Sample retained 2mm sieve	(Mea	sured)	8 %	NHBC Modified (I'p)	20 %
Curing time	27 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

11STING

Contract	1	Land	North of H	umber Do	oucy Lane	, Ipswich			
Serial No.		41296	5_1						
		DET						ND PLASTIC LIMIT AN	ND
Borehole / Pit No.			Sample	Water Content			escription		Remarks
	m	Туре	Reference	(W) %					
TP15	1.10	D	2	12.4	rare recently	and the second s	ed roots. Gravel is	ndy silty CLAY with fine and medium	
			PI	REPARATION	ON			Liquid Limit	43 %
Method of	f prepa	ration	1		Wet si	eved over 0.	425mm sieve	Plastic Limit	15 %
Sample ret	tained	0.425	mm sieve	(Measu	ured)		12 %	Plasticity Index	28 %
Corrected	water	conte	ent for mate	rial passing	g 0.425mn	n	14.1 %	Liquidity Index	-0.09
Sample ret	tained	2mm	sieve	(Measu	ured)		9 %	NHBC Modified (I'p)	25 %
Curing time	ie		25	hrs	Clay Co	ontent No	t analysed	Derived Activity	Not analysed
	F	70					1		
C=CLAY		60		CL	CI	СН	cv	CE	tial
		50							High ge Potenti
Plasticity I %	index	40							edium High Volume Change Potential
(lp)		30			×				ledium

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

ML

20

30

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

MI

40

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

50

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

MH

60

MV

80

90

70

ME

100

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

10

10

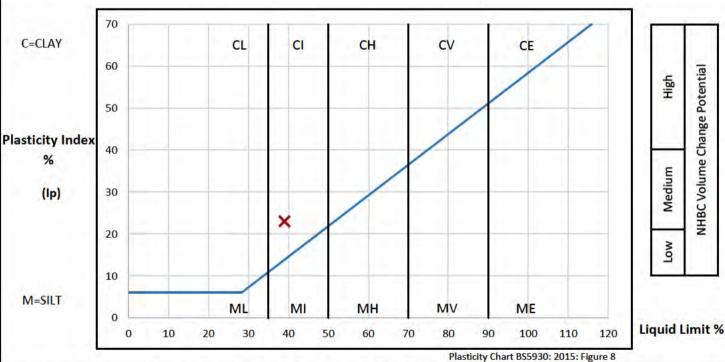
M=SILT

Liquid Limit %

120

110

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022



Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	IDenthi Sample		Water Content	Description	Remarks	
	m	Туре	Reference	(W) %		772.2.2
TP17	1.50	D	4	14.4	Hard olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	TION		Liquid Limit	39 %
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	16 %
Sample retained 0.425mm sie	eve (Mea	sured)	11 %	Plasticity Index	23 %
Corrected water content for r	naterial passi	ng 0.425mm	16.2 %	Liquidity Index	-0.07
Sample retained 2mm sieve	(Mea	sured)	8 %	NHBC Modified (I'p)	20 %
Curing time	93 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

NHBC Volume Change Potential

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

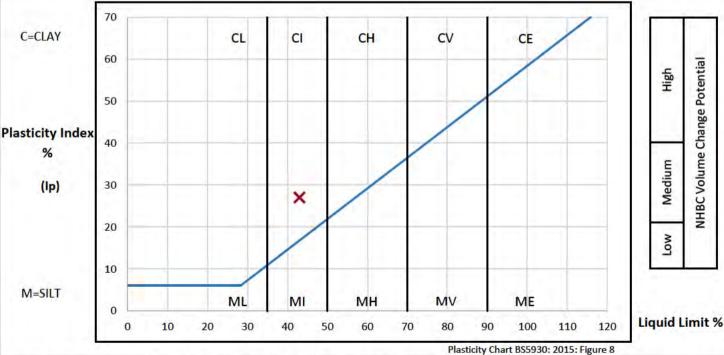
BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

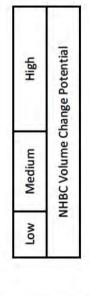
U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022


Contract Land North of Humber Doucy Lane, Ipswich


41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole / Pit No.	Depth		Sample	Water Content	Description	Remarks
m Type Ref	Reference	(W) %	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
TP18	1.10	D	3		Hard light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	TION		Liquid Limit	43 %
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	16 %
Sample retained 0.425mm sig	eve (Mea	sured)	11 %	Plasticity Index	27 %
Corrected water content for	material passi	ng 0.425mm	14.4 %	Liquidity Index	-0.12
Sample retained 2mm sieve	(Mea	sured)	9 %	NHBC Modified (I'p)	24 %
Curing time	96 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Method of Preparation:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key:

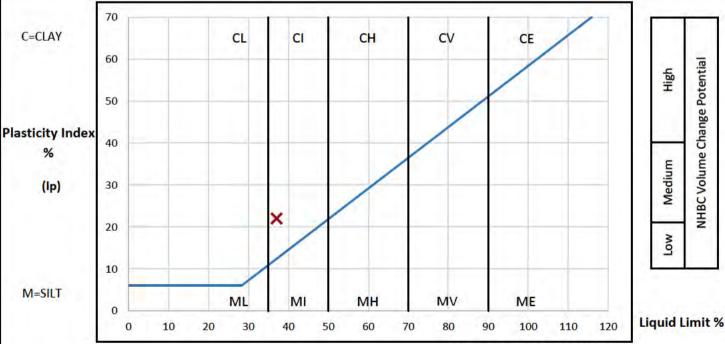
U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

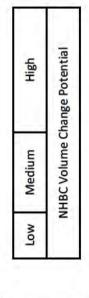
Comments:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022




Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Depth		Sample	Water Content	Description	Remarks
7 - 1 - 1	m	Туре	Reference	(W) %		
TP5	0.65	D	1	10.0	Hard olive yellow slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	Liquid Limit	37 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	15 %
Sample retained 0.425mm	sieve (Mea	sured)	8 %	Plasticity Index	22 %
Corrected water content f	or material passi	ng 0.425mm	10.9 %	Liquidity Index	-0.23
Sample retained 2mm siev	/e (Mea	sured)	3 %	NHBC Modified (I'p)	20 %
Curing time	96 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

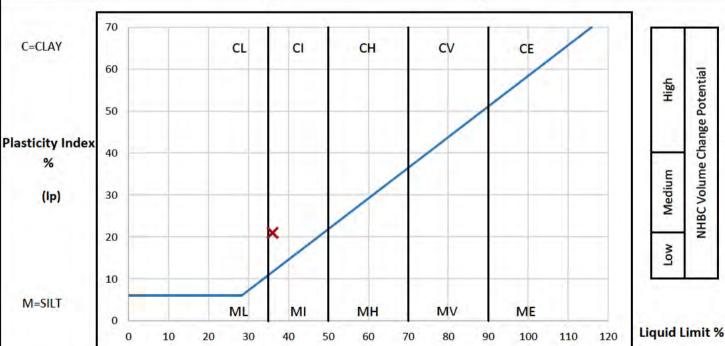
BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022



Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Depth		ample Water Content Description		Remarks	
7 -1 1	m	Туре	Reference	(W) %		
WS2	1.70	D	4	11.8	Hard mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	Liquid Limit	36 %			
Method of preparation		Wet sieved ov	er 0.425mm sieve	Plastic Limit	15 %
Sample retained 0.425mm sie	eve (Mea	sured)	16 %	Plasticity Index	21 %
Corrected water content for r	material passi	ng 0.425mm	14.0 %	Liquidity Index	-0.15
Sample retained 2mm sieve	(Mea	sured)	10 %	NHBC Modified (I'p)	18 %
Curing time	92 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

NHBC Volume Change Potential

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

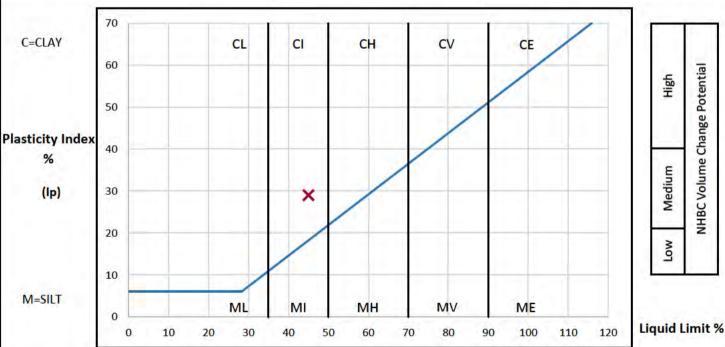
BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022



Contract Land North of Humber Doucy Lane, Ipswich 41296 1 Serial No.

DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX**

Borehole / Pit No.	Depth		Sample	Water Content	Description	Remarks
1.67.1	m	Туре	Reference	(W) %		
WS8	1.40	D	4	14.0	Very stiff light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	

	PREPARAT	Liquid Limit	45 %		
Method of preparation		Wet sieved over	er 0.425mm sieve	Plastic Limit	16 %
Sample retained 0.425mm	sieve (Mea	sured)	8 %	Plasticity Index	29 %
Corrected water content for	or material passi	ng 0.425mm	15.2 %	Liquidity Index	-0.07
Sample retained 2mm siev	/e (Mea	sured)	5 %	NHBC Modified (I'p)	27 %
Curing time	93 hrs	Clay Content	Not analysed	Derived Activity	Not analysed

NHBC Volume Change Potential

Plasticity Chart BS5930: 2015: Figure 8

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Method of Test:

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract: Land North of Humber Doucy Lane, Ipswich

Serial No: 41296_1

DETERMINATION OF THE SULPHATE CONTENT AND pH OF SOIL AND GROUNDWATER onc. of Soluble SO Calc'd Sample % Sample Borehole Depth Conc. Of рН Water Ground Passing Description Remarks Soluble Water **SO4** Value / Pit No. (m) 2mm Sieve Type Ref. 2:1 (g/L) (g/L) (g/L) Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and TP1 0.70 0.05 0.06 98 D 6.9 2 decayed roots. Gravel is fine and medium angular and subangular chert Very stiff mottled light grey, orange and light olive brown slightly gravelly slightly sandy silty CLAY with **TP10** 2.20 D 0.04 0.05 7.4 100 4 rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert Firm yellowish brown sandy silty CLAY with rare fine TP12 1.20 0.03 0.03 7.0 98 D 2 chert gravel Very stiff mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare **TP13** 2.40 D 0.05 0.05 7.3 98 5 recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert Hard mottled olive yellow and pale yellow slightly gravelly slightly sandy silty CLAY with occasional **TP17** 0.80 97 D < 0.01 < 0.01 7.4 3 recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and **TP18** 0.60 0.06 98 D 2 0.05 7.3 decayed roots. Gravel is fine and medium angular and subangular chert Very stiff mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with TP5 1.70 0.01 0.02 98 D 3 7.3 rare recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert Hard brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. WS2 0.90 D 3 0.08 0.10 6.8 96 Gravel is fine and medium angular to rounded chalk and chert

Method of Preparation:

BS1377: Part 1: 2016: 8.5, BS1377: Part 3: 1990: 5.3 Soil/Water Extract, 5.4 Groundwater

Method of Test:

BS1377: Part 3: 1990: 5.5

Type of Sample Key:

U= Undisturbed, B= Bulk, D= Disturbed, J= Jar, W= Water, SPT= Split Spoon Sample, C= Core Cutter

Comments:

Test not UKAS accredited

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location, and origin of test specimen within original sample. Oven

drying temperature if not 105-110C.

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 02/09/2022

Contract: Land North of Humber Doucy Lane, Ipswich

Serial No: 41296_1

Borehole	Depth	Sar	mple	Conc. of So Water	Ground	Calc'd Conc. Of	рН	% Sample Passing	Description	Remarks
/ Pit No.	(m)	Туре	Ref.	Soluble 2:1 (g/L)	Water (g/L)	SO4 (g/L)	Value	2mm Sieve		Remarks
WS8	1.90	D	5	<0.01		<0.01	7.2	98	Stiff brownish yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk	

Method of Preparation:

BS1377: Part 1: 2016: 8.5, BS1377: Part 3: 1990: 5.3 Soil/Water Extract, 5.4 Groundwater

Method of Test:

BS1377: Part 3: 1990: 5.5

Type of Sample Key:

U= Undisturbed, B= Bulk, D= Disturbed, J= Jar, W= Water, SPT= Split Spoon Sample, C= Core Cutter

Comments:

Test not UKAS accredited

Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location, and origin of test specimen within original sample. Oven

drying temperature if not 105-110C.

HEADSPACE MONITORING RECORD SHEET

Type of Test: Photoionisation Detector (PID)

Date	Location	Sample Ref	Depth (m)	Volatile (ppm)
12/08/2022	WS1	D1	0.20	0.5
		D2	0.50	0.9
		D3	0.90	1.2
		D4	1.40	2.3
		D5	1.90	1.4
		D6	2.40	0.8
		D7	2.75	2.2
	WS2	D1	0.20	<0.1
		D2	0.50	1.1
		D3	0.90	11.9
		D4	1.70	1.9
		D5	2.50	2.7
		D6	2.90	2.3
	WS3	D1	0.20	0.3
		D2	0.50	1.1
		D3	0.90	1.6
		D4	1.40	0.9
		D5	1.90	2.0
		D6	2.40	2.5
		D7	2.90	2.9
	WS4	D1	0.20	0.5
		D2	0.70	1.9
		D3	1.80	1.2
		D4	2.30	1.3
		D5	2.80	2.1
		D6	3.40	1.8
		D7	3.90	1.6
	WS5	D1	0.30	1.0
		D2	0.80	0.3
		D3	1.40	1.1
		D4	1.90	1.2
		D5	2.40	1.3
		D6	2.90	0.7
		D7	3.40	1.2
		D8	3.90	0.7

HEADSPACE MONITORING RECORD SHEET

Type of Test: Photoionisation Detector (PID)

Date	Location	Sample Ref	Depth (m)	Volatile (ppm)
12/08/2022	WS6	D1	0.20	0.6
		D2	0.50	1.8
		D3	0.90	3.1
		D4	1.70	2.0
		D5	2.30	2.0
		D6	2.80	1.8
	WS7	D1	0.20	0.7
		D2	0.50	1.0
		D3	0.90	0.7
		D4	1.40	0.8
		D5	1.90	1.1
		D6	2.40	1.8
		D7	2.95	2.2
		D8	3.30	2.1
		D9	3.80	1.3
	WS8	D1	0.20	0.8
		D2	0.50	1.9
		D3	0.90	2.8
		D4	1.40	2.9
		D5	1.90	2.5
		D6	2.40	2.2
		D7	2.90	0.2
		D8	3.40	1.7
		D9	3.90	1.0
	WS9	D1	0.20	0.1
		D2	0.50	2.3
		D3	0.90	1.2
		D4	1.30	1.2
		D5	1.80	1.6
		D6	2.30	1.2
		D7	2.80	1.6

HEADSPACE MONITORING RECORD SHEET

Test: Photoionisation Detector (PID)

Date	Location	Sample Ref	Depth (m)	Volatile (ppm)
12/08/2022	WS10	D1	0.20	1.1
		D2	0.50	1.3
		D3	0.90	1.6
		D4	1.40	2.0
		D5	1.90	2.9
		D6	2.40	2.8
		D7	2.90	1.9
		D8	3.40	2.6
		D9	3.90	2.6

Gavin Bell RSA Geotechnics Ltd Ashburnham House 1 Maitland Road Lion Barn Estate Needham Market Suffolk IP6 8NZ Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN

DETS Report No: 22-06936

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI

Order No: None Supplied

Sample Receipt Date: 16/08/2022

Sample Scheduled Date: 16/08/2022

Report Issue Number: 1

Reporting Date: 22/08/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 22-06936	Date Sampled	10/08/22	10/08/22	10/08/22	10/08/22	10/08/22
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Doucy Lane, Ipswich	TP / BH No	WS1	WS2	WS3	WS4	WS5
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied	Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2022	DETS Sample No	609167	609168	609169	609170	609171

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		Not Detected	Not Detected	Not Detected
рН	pH Units	N/a	MCERTS	7.0	7.2	6.9	7.6	7.6
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	16	10	< 10	15	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.02	0.01	< 0.01	0.02	< 0.01
Elemental Sulphur	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Organic Matter (SOM)	%	< 0.1	MCERTS	1.8	1.8	1.9	1.4	1.5
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	1	1.1	1.1	0.8	0.9
Arsenic (As)	mg/kg	< 2	MCERTS	10	11	12	9	10
Barium (Ba)	mg/kg	< 2.5	MCERTS	30	30	31	27	31
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.3	0.2	0.2	< 0.2	0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	13	14	15	13	12
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	18	15	18	12	14
Lead (Pb)	mg/kg	< 3	MCERTS	28	28	28	26	28
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	11	11	12	10	11
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	27	27	30	25	24
Zinc (Zn)	mg/kg	< 3	MCERTS	51	51	54	41	52
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Soil Analysis Certificate						
DETS Report No: 22-06936	Date Sampled	11/08/22	11/08/22	11/08/22	11/08/22	11/08/22
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Doucy Lane, Loswich	TP / BH No	WS6	WS7	WS8	WS9	WS10
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied	Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2022	DETS Sample No	609172	609173	609174	609175	609176

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		Not Detected		Not Detected
рН	pH Units	N/a	MCERTS	6.5	6.3	6.4	7.0	6.4
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Elemental Sulphur	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Organic Matter (SOM)	%	< 0.1	MCERTS	2.2	2.1	1.6	1.6	1.9
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	1.3	1.2	0.9	0.9	1.1
Arsenic (As)	mg/kg	< 2	MCERTS	11	11	9	10	9
Barium (Ba)	mg/kg	< 2.5	MCERTS	33	34	29	35	34
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.2	< 0.2	< 0.2	0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	14	15	13	13	11
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	14	13	15	15	11
Lead (Pb)	mg/kg	< 3	MCERTS	25	23	21	29	19
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	12	12	9	10	8
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	28	30	25	25	22
Zinc (Zn)	mg/kg	< 3	MCERTS	49	50	45	61	44
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

mg/kg

mg/kg

mg/kg

< 0.1

< 0.1

< 0.1

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate	e - Speciated PAHs							
DETS Report No: 22-0693	36		Date Sampled	10/08/22	10/08/22	10/08/22	10/08/22	10/08/22
RSA Geotechnics Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land Nor	th of Humber Doucy		TP / BH No	WS1	WS2	WS3	WS4	WS5
Lane, Ipswich								
Project / Job Ref: 16118:		,	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied			Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2	2022	D	ETS Sample No	609167	609168	609169	609170	609171
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.72	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.20	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.90	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.75	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.34	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.36	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.36	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.14	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.34	< 0.1
(4.0.0.1)			1105570	1				

< 0.1

< 0.1

< 0.1

< 1.6

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

0.21

< 0.1

MCERTS

MCERTS

Benzo(ghi)perylene Total EPA-16 PAHs

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 22-0693	36		Date Sampled	11/08/22	11/08/22	11/08/22	11/08/22	11/08/22
RSA Geotechnics Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land Nor	th of Humber Doucy		TP / BH No	WS6	WS7	WS8	WS9	WS10
Lane, Ipswich	· · · · · · · · · · · · · · · · · · ·							
Project / Job Ref: 161185	SI		Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied			Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2	022	DI	ETS Sample No	609172	609173	609174	609175	609176
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.13	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.10	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Soil Analysis Certificate	- Organochlorine F	Pesticio	des					
DETS Report No: 22-0693	36		Date Sampled	10/08/22	10/08/22	10/08/22	10/08/22	11/08/22
RSA Geotechnics Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land Nor	th of Humber Doucy		TP / BH No	WS1	WS3	WS4	WS5	WS7
Lane. I pswich								
Project / Job Ref: 161189	SI	A	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied			Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2022		DI	ETS Sample No	609167	609169	609170	609171	609173
5								
Determinand	Unit	RL	Accreditation	0.00	2.00	0.00	0.00	0.00
Aldrin	- T - 17	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
alpha-HCH	7	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
beta-HCH		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
cis-chlordane	- T - 17	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
delta-HCH		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dieldrin	3 3	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endosulfan A	3 3	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endosulfan B		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endrin	7	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
gamma-HCH (Lindane)		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Heptachlor		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Heptachlor epoxide	3 3	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Hexachlorobenzene (HCB)	7	< 0.02	NONE NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Isodrin		< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Methoxychlor	7	< 0.02	NONE	< 0.02	< 0.02 < 0.02	< 0.02	< 0.02	< 0.02
o,p' - DDD		< 0.02	NONE	< 0.02		< 0.02	< 0.02	< 0.02
o,p' - DDE	,	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
o,p' - DDT	3 3	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDD	3 3	< 0.02	NONE NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDE		< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDT	7	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
trans-chlordane		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Trifluralin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Soil Analysis Certificate - Or	rganochlorine P	esticio	des				
DETS Report No: 22-06936			Date Sampled	11/08/22			
RSA Geotechnics Ltd			Time Sampled	None Supplied			
Site Reference: Land North of	f Humber Doucy		TP / BH No	WS9			
Lane. I pswich							
Project / Job Ref: 16118SI		F	Additional Refs	D1			
Order No: None Supplied			Depth (m)	0.20			
Reporting Date: 22/08/2022		DI	ETS Sample No	609175			
Determinand	Unit		Accreditation		 	-	
Aldrin		< 0.02	NONE	< 0.02			
alpha-HCH	mg/kg		NONE	< 0.02			
beta-HCH	mg/kg -		NONE	< 0.02			
cis-chlordane	mg/kg		NONE	< 0.02			
delta-HCH	mg/kg -		NONE	< 0.02			
Dieldrin	mg/kg		NONE	< 0.02			
Endosulfan A	mg/kg -		NONE	< 0.02			
Endosulfan B	mg/kg		NONE	< 0.02			
Endrin	mg/kg	< 0.02	NONE	< 0.02			
gamma-HCH (Lindane)	mg/kg		NONE	< 0.02			
Heptachlor	mg/kg -		NONE	< 0.02			
Heptachlor epoxide	mg/kg -		NONE	< 0.02			
Hexachlorobenzene (HCB)	mg/kg -	< 0.02	NONE	< 0.02			
Isodrin	mg/kg -		NONE	< 0.02			
Methoxychlor	mg/kg		NONE	< 0.02			
o,p' - DDD	mg/kg -		NONE	< 0.02			
o,p' - DDE	mg/kg		NONE	< 0.02			
o,p' - DDT	mg/kg -	< 0.02	NONE	< 0.02			
p,p' - DDD	mg/kg	< 0.02	NONE	< 0.02			
p,p' - DDE	mg/kg -	< 0.02	NONE	< 0.02			
p,p' - DDT	mg/kg -		NONE	< 0.02			
trans-chlordane	mg/kg	< 0.02	NONE	< 0.02			
Trifluralin	mg/kg -	< 0.02	NONE	< 0.02			

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Soil Analysis Certificate		us Pes						
DETS Report No: 22-0693	36		Date Sampled	10/08/22	10/08/22	10/08/22	10/08/22	11/08/22
RSA Geotechnics Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land Nor Lane. Ipswich	•		TP / BH No	WS1	WS3	WS4	WS5	WS7
Project / Job Ref: 161185		A	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied			Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2	022	DI	TS Sample No	609167	609169	609170	609171	609173
Determinand	Unit	RL	Accreditation					
Azinphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorfenvinphos, alpha	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorfenvinphos, beta	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorpyriphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diazinon	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dichlorvos	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethoate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fenitrothion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fenthion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Malathion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mevinphos, €	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mevinphos, (Z)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Parathion-ethyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Parathion-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phorate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Sail Analysis Cartificata	Organophasphar	uc Doc	tioldoc			
Soil Analysis Certificate DETS Report No: 22-0693		us Pes	Date Sampled	11/08/22		
RSA Geotechnics Ltd	50		Time Sampled	None Supplied		
Site Reference: Land Nor	th of Humber Doucy		TP / BH No	WS9		
Lane, I pswich						
Project / Job Ref: 161189		A	Additional Refs	D1		
Order No: None Supplied			Depth (m)	0.20		
Reporting Date: 22/08/2	.022	DI	ETS Sample No	609175		<u> </u>
Determinand			Accreditation	-		_
Azinphos-methyl)		NONE	< 0.1		ļ
Chlorfenvinphos, alpha	7 7	< 0.1	NONE	< 0.1		
Chlorfenvinphos, beta	mg/kg	< 0.1	NONE	< 0.1		
Chlorpyriphos-methyl	mg/kg	< 0.1	NONE	< 0.1		
Diazinon	mg/kg	< 0.1	NONE	< 0.1		
Dichlorvos	mg/kg	< 0.1	NONE	< 0.1		
Dimethoate	mg/kg	< 0.1	NONE	< 0.1		
Fenitrothion	mg/kg	< 0.1	NONE	< 0.1		
Fenthion	mg/kg	< 0.1	NONE	< 0.1		
Malathion	mg/kg	< 0.1	NONE	< 0.1		
Mevinphos, €	mg/kg	< 0.1	NONE	< 0.1	·	
Mevinphos, (Z)	mg/kg	< 0.1	NONE	< 0.1		
Parathion-ethyl	mg/kg	< 0.1	NONE	< 0.1		
Parathion-methyl	mg/kg	< 0.1	NONE	< 0.1	·-	
Phorate	mg/kg	< 0.1	NONE	< 0.1		

Soil Analysis Certificate - Triazine Herbicid	es					
DETS Report No: 22-06936	Date Sampled	10/08/22	10/08/22	10/08/22	10/08/22	11/08/22
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Doucy	TP / BH No	WS1	WS3	WS4	WS5	WS7
Lane, Ipswich						
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied	Depth (m)	0.20	0.20	0.20	0.20	0.20
Reporting Date: 22/08/2022	DETS Sample No	609167	609169	609170	609171	609173

Determinand	Unit	RL	Accreditation					
Atrazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Prometryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Propazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Simazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Terbuthylazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Terbutryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ametryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Soil Analysis Certificate	- Triazine Herbicid	les					
DETS Report No: 22-0693	16		Date Sampled	11/08/22			
RSA Geotechnics Ltd			Time Sampled	None Supplied			
Site Reference: Land Nort Lane, Ipswich	,		TP / BH No	WS9			
Project / Job Ref: 161189	SI	-	Additional Refs	D1			
Order No: None Supplied			Depth (m)	0.20			
Reporting Date: 22/08/2	022	DETS Sample No		609175	 		
Determinand	Unit	RL	Accreditation				
Atrazine	mg/kg	< 0.1 NONE		< 0.1	 		
Prometryn	Prometryn mg/kg < 0.1 No		NONE	< 0.1	 		
Propazine	ma/ka	< 0.1	NONE	< 0.1			

Determinand	Unit	RL	Accreditation			
Atrazine	mg/kg	< 0.1	NONE	< 0.1		
Prometryn	mg/kg	< 0.1	NONE	< 0.1		
Propazine	mg/kg	< 0.1	NONE	< 0.1		
Simazine	mg/kg	< 0.1	NONE	< 0.1		
Terbuthylazine	mg/kg	< 0.1	NONE	< 0.1		
Terbutryn	mg/kg	< 0.1	NONE	< 0.1		
Ametryn	mg/kg	< 0.1	NONE	< 0.1		

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-06936

RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, I pswich

Project / Job Ref: 16118SI

Order No: None Supplied

Reporting Date: 22/08/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
609167	WS1	D1	0.20	< 0.1	Brown sandy clay with stones and vegetation
609168	WS2	D1	0.20	5.4	Brown sandy clay with vegetation
609169	WS3	D1	0.20		Brown sandy clay with stones and vegetation
609170	WS4	D1	0.20	5.2	Brown sandy clay with stones
609171	WS5	D1	0.20	4.3	Brown sandy clay with stones
609172	WS6	D1	0.20	4.4	Brown sandy clay with stones and vegetation
609173	WS7	D1	0.20	5	Brown sandy clay
609174	WS8	D1	0.20	4	Brown sandy clay with stones and vegetation
609175	WS9	D1	0.20	4.7	Brown sandy clay with stones and vegetation
609176	WS10	D1	0.20	3.5	Brown sandy clay with stones and vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-06936 RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI Order No: None Supplied Reporting Date: 22/08/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals		E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil Soil	D AR		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014 E018
Soil	D AR		Determination of sulphide by distillation followed by colorimetry Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018
Soil	AR	Supriur - Total SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-UES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
Soil	D	Toluene Extractable Matter (TEM)	addition of ferric nitrate followed by colorimetry Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	iron (II) sulphate Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

ist of HWOL Acronyms and Operators
DETS Report No: 22-06936
RSA Geotechnics Ltd
ite Reference: Land North of Humber Doucy Lane, Ipswich
Project / Job Ref: 16118SI
Order No: None Supplied
Reporting Date: 22/08/2022

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
1	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym	

Phil Gawne
RSA Geotechnics Ltd
Ashburnham House
1 Maitland Road
Lion Barn Estate
Naedham Market
Surroik
IP6 8NZ

Derwentside Environmental Testing Services Ltd $U_{\text{nit}} \, \mathbf{1}$

Unit I Rose Lane Industrial Estate Rose Lane Lanham Heath Kent ME17 2JN

DETS Report No: 22-07097

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI

Order No: None Supplied

Sample Receipt Date: 22/08/2022

Sample Scheduled Date: 22/08/2022

Report Issue Number: 1

Reporting Date: 26/08/2022

Authorised by:

Nick Watson General Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope or ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 22-07097	Date Sampled	16/08/22	16/08/22	16/08/22	16/08/22	16/08/22
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Doucy Lane,	TP / BH No	TP1	TP2	TP3	TP4	TP7
Ipswich						
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied	Depth (m)	0.15	0.70	0.20	0.10	0.20
Reporting Date: 26/08/2022	DETS Sample No	609887	609888	609889	609890	609891

Determinand	Unit	RL	Accreditation					
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected				Not Detected
рН	pH Units	N/a	MCERTS	6.9	8.4	8.0	7.3	8.1
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	11	< 10	< 10	< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Elemental Sulphur	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Organic Matter (SOM)	%	< 0.1	MCERTS	2.4	0.5	1.9	1.8	1.7
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	1.4	0.3	1.1	1.1	1
Arsenic (As)	mg/kg	< 2	MCERTS	12	34	23	16	12
Barium (Ba)	mg/kg	< 2.5	MCERTS	34	30	134	40	40
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.6	0.9	0.8	0.9	0.8
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	1	1.2
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	14	24	22	21	19
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	14	12	17	15	16
Lead (Pb)	mg/kg	< 3	MCERTS	28	10	35	24	24
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	15	22	19	21	17
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	32	68	60	48	38
Zinc (Zn)	mg/kg	< 3	MCERTS	53	41	57	57	62
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Soil Analysis Certificate						
DETS Report No: 22-07097	Date Sampled	15/08/22	15/08/22	15/08/22	15/08/22	15/08/22
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Doucy Lane,	TP / BH No	TP9	TP11	TP13	TP14	TP16
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied	Depth (m)	0.10	0.10	0.15	0.30	0.10
Reporting Date: 26/08/2022	DETS Sample No	609892	609893	609894	609895	609896

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025				Not Detected	
рН	pH Units	N/a	MCERTS	7.7	8.3	8.2	8.2	7.9
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Elemental Sulphur	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Organic Matter (SOM)	%	< 0.1	MCERTS	1.7	2.2	3.6	1.9	2
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	1	1.3	2.1	1.1	1.2
Arsenic (As)	mg/kg	< 2	MCERTS	9	12	11	14	14
Barium (Ba)	mg/kg	< 2.5	MCERTS	32	40	38	44	48
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.5	0.7	0.6	0.8	0.9
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	12	16	15	19	21
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	12	19	18	23	20
Lead (Pb)	mg/kg	< 3	MCERTS	31	39	33	33	28
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	12	16	13	18	23
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	24	35	30	38	41
Zinc (Zn)	mg/kg	< 3	MCERTS	46	56	53	68	60
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Date Sampled	15/08/22	15/08/22			
Time Sampled	None Supplied	None Supplied			
TP / BH No	TP16	TP17			
Additional Refs	D2	D1			
Depth (m)	0.60	0.10			
DETS Sample No	609897	609898			
	Time Sampled TP / BH No Additional Refs Depth (m)	Time Sampled None Supplied TP / BH No TP16 Additional Refs D2 Depth (m) 0.60	Time Sampled None Supplied None Supplied TP / BH No TP16 TP17 Additional Refs D2 D1 Depth (m) 0.60 0.10	Time Sampled None Supplied None Supplied TP / BH No TP16 TP17 Additional Refs D2 D1 Depth (m) 0.60 0.10	Time Sampled None Supplied None Supplied TP / BH No TP16 TP17 Additional Refs D2 D1 Depth (m) 0.60 0.10

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025				
рН	pH Units	N/a	MCERTS	8.0	7.6		
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01		
Elemental Sulphur	mg/kg	< 10	NONE	< 10	< 10		
Organic Matter (SOM)	%	< 0.1	MCERTS	0.6	1.8		
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	0.4	1		
Arsenic (As)	mg/kg	< 2	MCERTS	10	12		
Barium (Ba)	mg/kg	< 2.5	MCERTS	33	38		
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.7	0.6		
W/S Boron	mg/kg	< 1	NONE	< 1	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	15	16		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	12	17		
Lead (Pb)	mg/kg	< 3	MCERTS	10	136		
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	17	15		
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3		
Vanadium (V)	mg/kg	< 1	MCERTS	29	32		
Zinc (Zn)	mg/kg	< 3	MCERTS	42	56		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	 	

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 22-07097			Date Sampled	16/08/22	16/08/22	16/08/22	16/08/22	16/08/22
RSA Geotechnics Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land Nor Lane, Ipswich	Site Reference: Land North of Humber Doucy			TP1	TP2	TP3	TP4	TP7
Project / Job Ref: 161185	SI	/	Additional Refs	D1	D1	D1	D1	D1
Order No: None Supplied		Depth (m)		0.15	0.70	0.20	0.10	0.20
Reporting Date: 26/08/2022		DETS Sample No		609887	609888	609889	609890	609891
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	ma/ka	< 0.1	MCERTS	- 0.1	< 0.1	< 0.1	< 0.1	- 0.1

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.12	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6

Benzo(ghi)perylene Total EPA-16 PAHs mg/kg

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Speciated PAHs							
DETS Report No: 22-07097		Date Sampled	15/08/22	15/08/22	15/08/22	15/08/22	15/08/22
RSA Geotechnics Ltd		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Land North of Humber Douc	/	TP / BH No	TP9	TP11	TP13	TP14	TP16
Lane. Ipswich							
Project / Job Ref: 16118SI	Additional Refs		D1	D1	D1	D1	D1
Order No: None Supplied		Depth (m)	0.10	0.10	0.15	0.30	0.10
Reporting Date: 26/08/2022	D	ETS Sample No	609892	609893	609894	609895	609896
Determinand Uni	t RL	Accreditation					
Naphthalene mg/k	1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene mg/k	g < 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene mg/k	g < 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene mg/k		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene mg/k	_	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene mg/k	/	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene mg/k	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

< 0.1

< 0.1

DETS Report No: 22-07097	Date Sampled	15/08/22	15/08/22		
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Land North of Humber Doucy Lane. Ipswich	TP / BH No	TP16	TP17		
Project / Job Ref: 16118SI	Additional Refs	D2	D1		
Order No: None Supplied	Depth (m)	0.60	0.10		
Reporting Date: 26/08/2022	DETS Sample No	609897	609898		
Determinand Unit	RL Accreditation				
Naphthalene mg/kg	< 0.1 MCERTS	< 0.1	< 0.1		
	0.4				

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.17		
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.15		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.11		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6		

Tel: 01622 850410

Soil Analysis Certificate -		Pesticio	des Date Sampled					
	DETS Report No: 22-07097			16/08/22	16/08/22	15/08/22	15/08/22	
RSA Geotechnics Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Land North	n of Humber Doucy		TP / BH No	TP2	TP7	TP13	TP16	
Lane. I pswich								
Project / Job Ref: 16118SI		F	Additional Refs	D1	D1	D1	D1	
Order No: None Supplied			Depth (m)	0.70	0.20	0.15	0.10	
Reporting Date: 26/08/20	22	DI	ETS Sample No	609888	609891	609894	609896	
5	11.20	Б.	A 111 11					
Determinand	Unit	RL	Accreditation	0.00	0.00	0.00	0.00	
Aldrin	اث اث	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
alpha-HCH		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
beta-HCH	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
cis-chlordane	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
delta-HCH		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Dieldrin		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Endosulfan A		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Endosulfan B		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Endrin	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
gamma-HCH (Lindane)	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Heptachlor		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Heptachlor epoxide	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Hexachlorobenzene (HCB)	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Isodrin	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Methoxychlor	mg/kg		NONE	< 0.02	< 0.02	< 0.02	< 0.02	
o,p' - DDD		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
o,p' - DDE		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
o,p' - DDT	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
p,p' - DDD	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
p,p' - DDE	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	·
p,p' - DDT	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
trans-chlordane		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	
Trifluralin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	

Tel: 01622 850410

Soil Analysis Certificate - Organophosphorus Pesticides								
DETS Report No: 22-07097	Date Sampled	16/08/22	16/08/22	15/08/22	15/08/22			
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied			
Site Reference: Land North of Humber Doucy	TP / BH No	TP2	TP7	TP13	TP16			
Lane, Ipswich								
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1			
Order No: None Supplied	Depth (m)	0.70	0.20	0.15	0.10			
Reporting Date: 26/08/2022	DETS Sample No	609888	609891	609894	609896			

Determinand	Unit	RL	Accreditation					
Azinphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Chlorfenvinphos, alpha	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Chlorfenvinphos, beta	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Chlorpyriphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Diazinon	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Dichlorvos	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Dimethoate	mg/kg		NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Fenitrothion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Fenthion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Malathion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Mevinphos, €	mg/kg		NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Mevinphos, (Z)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Parathion-ethyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Parathion-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Phorate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	

Tel: 01622 850410

Soil Analysis Certificate - Triazine Herbicide	es					
DETS Report No: 22-07097	Date Sampled	16/08/22	16/08/22	15/08/22	15/08/22	
RSA Geotechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Land North of Humber Doucy Lane. I pswich	TP / BH No	TP2	TP7	TP13	TP16	
Project / Job Ref: 16118SI	Additional Refs	D1	D1	D1	D1	
Order No: None Supplied	Depth (m)	0.70	0.20	0.15	0.10	
Reporting Date: 26/08/2022	DETS Sample No	609888	609891	609894	609896	

Determinand	Unit	RL	Accreditation					
Atrazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Prometryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Propazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Simazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Terbuthylazine	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Terbutryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Ametryn	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-07097

RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, I pswich

Project / Job Ref: 16118SI

Order No: None Supplied

Reporting Date: 26/08/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
609887	TP1	D1	0.15	5	Brown sandy clay with stones and vegetation
609888	TP2	D1	0.70	7.9	Light brown sandy clay
609889	TP3	D1	0.20	4.6	Light brown sandy clay with vegetation
609890	TP4	D1	0.10	8.1	Light brown sandy clay with stones and vegetation
609891	TP7	D1	0.20	8.5	Light brown sandy clay with stones and vegetation
609892	TP9	D1	0.10		Light brown sandy clay with stones and vegetation
609893	TP11	D1	0.10		Light brown sandy clay
609894	TP13	D1	0.15	6	Light brown sandy clay
609895	TP14	D1	0.30		Light brown sandy clay
609896	TP16	D1	0.10		Light brown sandy clay
609897	TP16	D2	0.60	7.4	Light brown sandy clay
609898	TP17	D1	0.10	5.5	Light brown sandy clay with vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm U/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-07097 RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI Order No: None Supplied Reporting Date: 26/08/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals		E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil Soil	D AR		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014 E018
Soil	D AR		Determination of sulphide by distillation followed by colorimetry Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018
Soil	AR	Supriur - Total SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-UES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
Soil	D	Toluene Extractable Matter (TEM)	addition of ferric nitrate followed by colorimetry Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	iron (II) sulphate Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

List of HWOL Acronyms and Operators
DETS Report No: 22-07097
RSA Geotechnics Ltd
Site Reference: Land North of Humber Doucy Lane, I pswich
Project / Job Ref: 16118SI
Order No: None Supplied
Reporting Date: 26/08/2022

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym			

Gavin Bell RSA Geotechnics Ltd Ashburnham House 1 Maitland Road Lion Barn Estate Needham Market Suffolk IP6 8NZ Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-07792

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI Schedule 3

Order No: None Supplied

Sample Receipt Date: 15/09/2022

Sample Scheduled Date: 15/09/2022

Report Issue Number: 1

Reporting Date: 22/09/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

RSA Geotechnics Ltd Site Reference: Land North of	DETS Report No: 22-07792 Date Sampled		16/08/22			Landfill Wast	te Acceptance C	riteria Limit
	RSA Geotechnics Ltd Time Sampled		None Supplied			9		
Doucy Lane, Ipswich	Humber	TP / BH No	WAC 1 Composite				Stable Non-	
Project / Job Ref: 16118SI Sc	chedule 3	Additional Refs	None Supplied			Inert Waste	reactive HAZARDOUS	Hazardous Waste
Order No: None Supplied		Depth (m)	None Supplied			Landfill	waste in non- hazardous	Landfill
Reporting Date: 22/09/2022		DETS Sample No	613064				Landfill	
Determinand	Unit				1.0	d	· ·	
LOC _{WD}	%	< 0.1	1			3%	5%	6%
oss on Ignition	%	< 0.01	3.86	. —	-)		4	10%
STEX ^{MU}	mg/kg	< 0.05	< 0.05	100	9.1	6	-	
Sum of PCBs	mg/kg	< 0.1	< 0.1	100		1	90	- H
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		\
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7	les .	- 0	100		
HMU	pH Units	N/a	8.0)	-14-	>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
Eluate Analysis			2:1	8:1	Cumulative 10:1	Limit values for compliance leaching using BS EN 12457-3 at L/S 10 I/		
V- 20-0-10-0			mg/I	mg/I	mg/kg		(mg/kg)	
Arsenic ^U	31,		< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U	311		< 0.02	< 0.02	< 0.1	20	100	300
Cadmium ^U		- 0	< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U	36	-)	< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^u		- 2	< 0.01	< 0.01	< 0.5	2	50	100
Mercury ^U	957		< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U	- 1		0.005	0.003	< 0.1	0.5	10	30
Nickel ^U	8	- 4	< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U	4	0.1	< 0.005	< 0.005	< 0.2	0.5	10	50
		= 2	< 0.005	< 0.005	< 0.05	0.06	0.7	5
Antimony ^U		- 2	< 0.005	< 0.005	< 0.05	0.1	0.5	7
Selenium ^U		1.71	0.008	0.006	< 0.2	4	50	200
Selenium ^u Zinc ^u	-				33		15000	
Selenium ^u Zinc ^u Chloride ^u			4	3		800	15000	25000
Selenium ^u Zinc ^u Chloride ^u Fluoride ^u	1		1	< 0,5	1.1	10	150	500
Selenium ^u Zinc ^u Chloride ^u Fluoride ^u Sulphate ^u			7	< 0.5 3	1.1 30	10 1000	150 20000	500 50000
Selenium ^u Zinc ^u Chloride ^u Fluoride ^u Sulphate ^u TDS			1 7 108	< 0.5 3 72	1.1 30 761	10 1000 4000	150 20000 60000	500 50000 100000
Selenium ^u Zinc ^u Chloride ^u Fluoride ^u Sulphate ^u			7	< 0.5 3	1.1 30	10 1000	150 20000	500 50000

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C, The Samples Descriptions page describes if the test is performed on the dried or as-Arraytical results are expressed on a dry weight basis where samples are assisted the dress than 50°C. The samples be received portion Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Report No: 22-07792		Date Sampled	11/08/22			Landfill Wast	te Acceptance C	criteria Limit
RSA Geotechnics Ltd Time Sampled		- 250	None Supplied	3 *		7		
Site Reference: Land North of Humber		TP / BH No	WAC 2 Composite		0.1		Stable Non-	
Project / Job Ref: 16118SI	Schedule 3	Additional Refs	None Supplied			Inert Waste	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: None Supplied		Depth (m)	None Supplied			Landini	hazardous Landfill	Landfill
Reporting Date: 22/09/202	2	DETS Sample No	613065				Contain	
Determinand	Unit	MDL				d.	· ·	
LOC _{WD}	%	< 0.1	1			3%	5%	6%
oss on Ignition	%	< 0.01	5		= 7		40	10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05		9.1	6	_	-
Sum of PCBs	mg/kg	< 0.1	< 0.1			1	90) # .=
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		`
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7			100		
oH ^{MU}	pH Units	N/a	6.7			14-5-1	>6	A
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
Eluate Analysis			2:1	8:1	Cumulative 10:1		Limit values for compliance leaching using BS EN 12457-3 at L/S 10 l/	
A STATE OF THE STA	4.0		mg/I	mg/I	mg/kg		(mg/kg)	
Arsenic			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U	15 1		< 0.02	< 0.02	< 0.1	20	100	300
Cadmium ^u		3.0	< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^u			< 0.01	< 0.01	< 0.5	2	50	100
Mercury ^u			< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U			0.002	< 0.001	< 0.1	0.5	10	30
Nickel ^U	6.1		< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U		€.	< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony	-		< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium ^U	-		< 0.005	< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			0.009	< 0.005	< 0.2	4	50	200
Chloride ^U		1.04	5	3	32	800	15000	25000
Fluoride ^U			0.6	< 0.5	< 1	10	150	500
Sulphate ^U			6		26	1000	20000	50000
TDS			< 0.01	44 < 0.01	479	4000 1	60000	100000
Phenol Index DOC			21.8	< 0.01	< 0.5 202	500	800	1000
			21.8	20	202	500	000	1000
Leach Test Information						-		
Sample Mass (kg)			0.18					
Dry Matter (%)			95.7					
Moisture (%)			4.6					
Stage 1						47		
Jedijo 1								
Volume Eluate L2 (litres) Filtered Eluate VE1 (litres)			0.34					

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C, The Samples Descriptions page describes if the test is performed on the dried or as-Analytical results are expressed on a dry weight basis where samples are assisted unled at less than 50°C, The samples be received portion Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Waste Acceptance Criteria Analytical Certificate - BS EN 12457/3 DETS Report No: 22-07792 **Landfill Waste Acceptance Criteria Limits** 16/08/22 Sampled Time None RSA Geotechnics Ltd Sampled Supplied Site Reference: Land North of Humber WAC 3 Stable Non-TP / BH No Doucy Lane, Ipswich Composite reactive Additional Hazardous None Project / Job Ref: 16118SI Schedule 3 **Inert Waste** HAZARDOUS Supplied Waste Landfill waste in non None Landfill Order No: None Supplied Depth (m) hazardous Supplied Landfill DETS Reporting Date: 22/09/2022 613066 Sample No Determinand Unit MDL 5% TOC < 0.10.9 3% 6% Loss on Ignition 0/ < 0.01 4.80 10% mg/ko < 0.05 < 0.05 6 BTEXMU Sum of PCBs mg/kg < 0.1 < 0.1 Mineral Oil^{MU} mg/kg < 10 < 10 500 Total PAH^{MU} < 1.7 < 1.7 100 mg/ka pH' pH Units N/a 7.3 >6 To be Acid Neutralisation Capacity mol/kg (+/-< 1 < 1 Cumulativ mit values for compliance leaching test 8:1 2:1 **Eluate Analysis** 10:1 using BS EN 12457-3 at L/S 10 l/kg mg/kg (mg/kg) mg/l mg/I < 0.01 Arsenio < 0.2 < 0.02 < 0.02 < 0.1 100 300 20 Barium¹ < 0.0005 < 0.0005 < 0.02 0.04 Cadmium Chromium < 0.005 < 0.005 < 0.20 0.5 70 10 < 0.01 < 0.01 Copper < 0.5 50 100 0.01 < 0.0005 < 0.005 Mercury < 0.0005 0.2 2 Molybdenum^U 0.004 0.002 < 0.1 0.5 10 30 Nickel^U < 0.007 < 0.007 < 0.2 0.4 10 40 Lead^U < 0.005 < 0.005 < 0.2 0.5 10 50 Antimony^L < 0.005 < 0.005 < 0.05 0.06 0.7 5 < 0.005 < 0.005 0.1 0.5 7 Selenium^u < 0.05 0.010 < 0.005 50 200 < 0.2 Zinc Chloride^U 800 15000 30 25000 Fluoride 1.3 0.7 7.8 10 150 500 Sulphate 6 24 1000 20000 50000 TDS 114 66 714 4000 60000 100000 Phenol Index < 0.01 < 0.01 < 0.5 1 DOC 13.4 17.7 173 500 800 1000 Leach Test Information Sample Mass (kg) 0.19 Dry Matter (%) 93.5 Moisture (%) 7 Stage 1 Volume Eluate L2 (litres) 0.34 Filtered Eluate VE1 (litres) 0.20

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or assertion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-07792

RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, I pswich

Project / Job Ref: 16118SI Schedule 3

Order No: None Supplied

Reporting Date: 22/09/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 613064	WAC 1 Composite	None Supplied	None Supplied	4.9	Brown sandy clay with stones and vegetation
\$ 613065	WAC 2 Composite	None Supplied	None Supplied	4.3	Brown sandy clay with stones
\$ 613066	WAC 3 Composite	None Supplied	None Supplied	6.5	Brown sandy clay with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$

& samples received in inappropriate containers for hydrocarbon analysis

\$ samples exceeded recommended holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-07792 RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI Schedule 3

Order No: None Supplied Reporting Date: 22/09/2022

Matrix	Analysed	Determinand	Brief Method Description	Method
	On		·	No
Soil	D		Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil Soil	AR D		Determination of BTEX by headspace GC-MS Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E001 E002
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES Determination of chloride by extraction with water & analysed by ion chromatography	E002
			Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil Soil	AR AR		Determination of free cyanide by distillation followed by colorimetry Determination of total cyanide by distillation followed by colorimetry	E015 E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E013
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil Soil	AR AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004 E004
			Determination of acetone/nexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D D		Determination of TOC by combustion analyser.	E027
Soil Soil	D D		Determination of TOC by combustion analyser. Determination of TOC by combustion analyser.	E027 E027
Soil	AR	Exchangeable Ammonium		E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil Soil	AR D	Moisture Content	Moisture content; determined gravimetrically Determination of nitrate by extraction with water & analysed by ion chromatography	E003 E009
Soil	D	Organic Matter	Determination of nitrate by extraction with water & analysed by ion chromatography Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E009
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil Soil	AR D		Determination of phenols by distillation followed by colorimetry Determination of phosphate by extraction with water & analysed by ion chromatography	E021 E009
Soil	D		Determination of phosphate by extraction with water & analysed by for chlomatography Determination of total sulphate by extraction with 10% HCI followed by ICP-0ES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of somi volatile excepts empounds by extraction in sections and become followed by	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001
D	Dried			

Water Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-07792

RSA Geotechnics Ltd

Site Reference: Land North of Humber Doucy Lane, Ipswich

Project / Job Ref: 16118SI Schedule 3

Order No: None Supplied Reporting Date: 22/09/2022

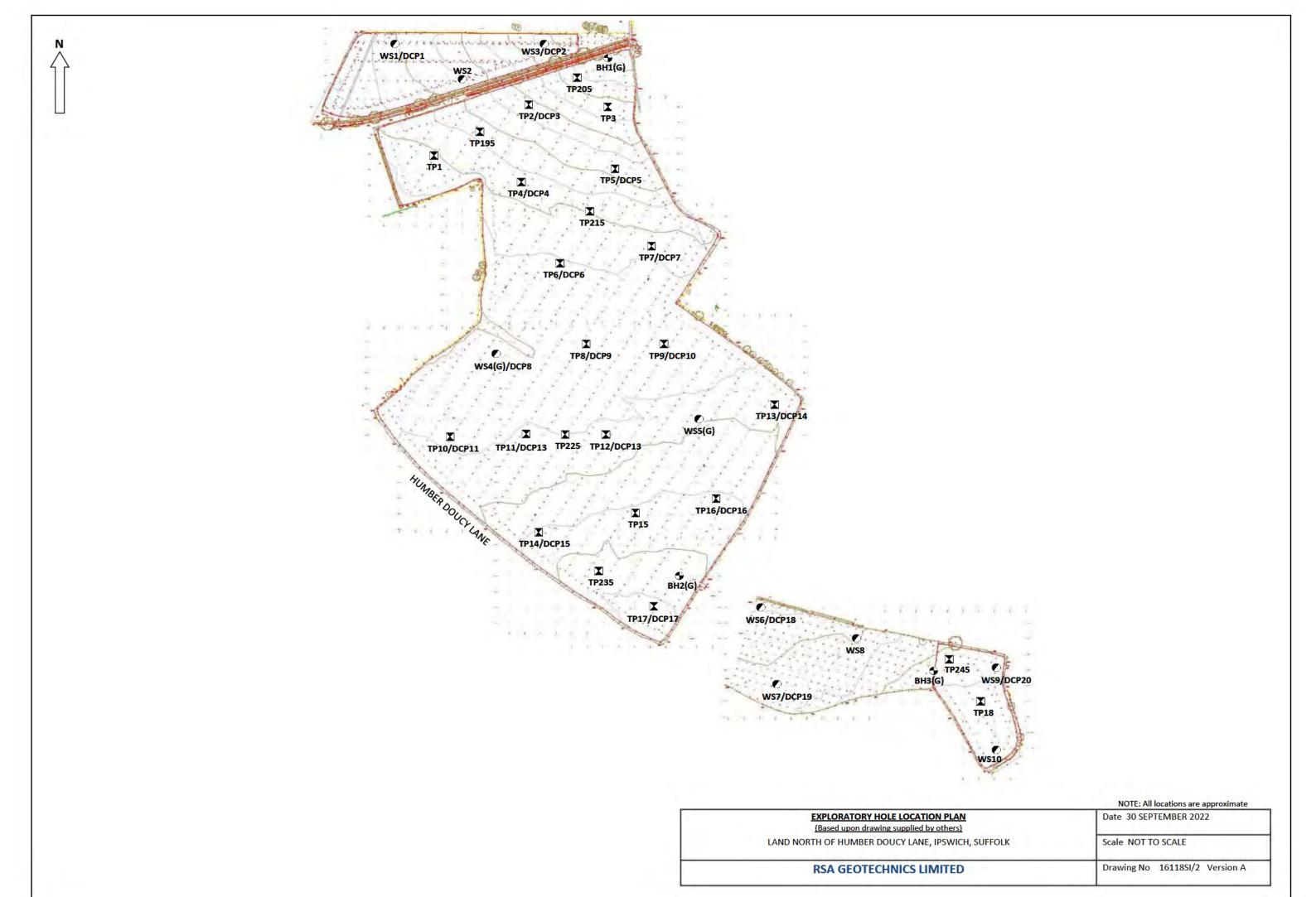
Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid: liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F		Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F			E102
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105
	· ·	1 ,	dichloromethane followed by GC-MS	
Water	F	PCB - 7 Congeners		E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of redox potential by electrometric measurement	E113
Water	F UF		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide		E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection is dishlarged than a fallowed by CCAMS.	E106
Water	UF	Toluono Extractable Matter (TEM)	in dichloromethane followed by GC-MS Gravimetrically determined through liquid: liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E111
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F		Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Κeν

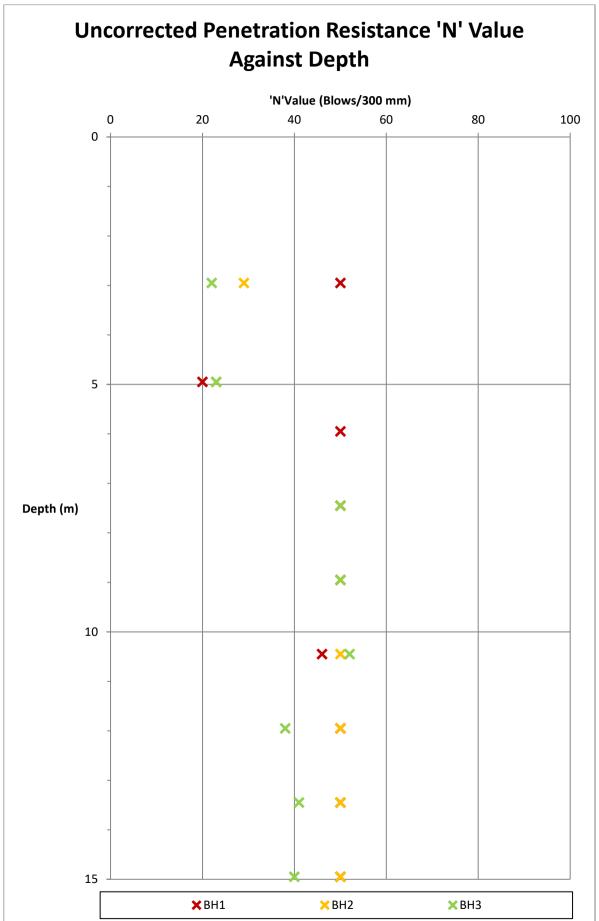
F Filtered UF Unfiltered

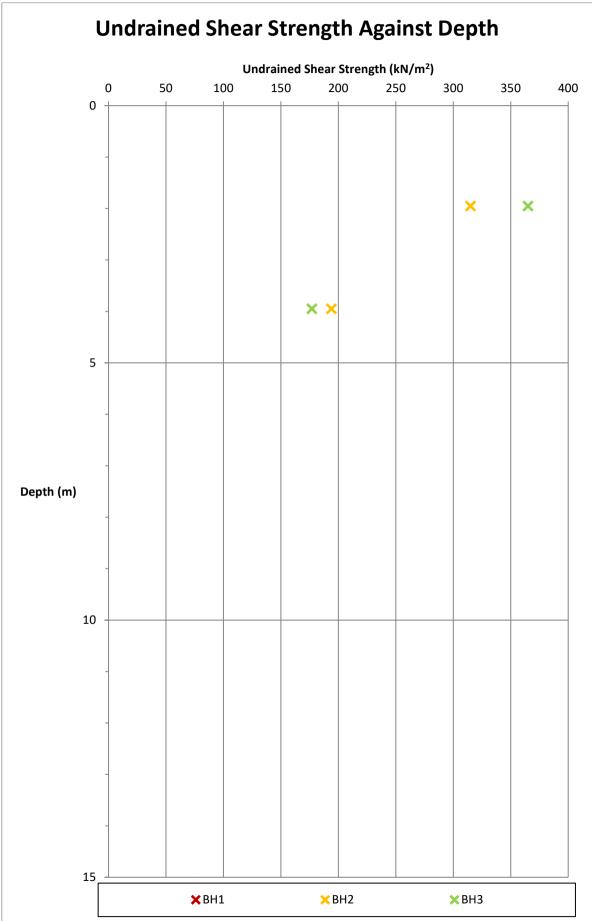
List of HWOL Acronyms and Operators
DETS Report No: 22-07792
RSA Geotechnics Ltd
Site Reference: Land North of Humber Doucy Lane, I pswich
Project / Job Ref: 16118SI Schedule 3
Order No: None Supplied
Reporting Date: 22/09/2022

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total


Det - Acronym
Mineral Oil (C10 - C40) (BS EN 12457-3) - EH_CU_1D_AL
Total BTEX (BS EN 12457-3) - HS_1D_MS_Total

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
TOC	Soil	BS EN 12457	20.0	%
Loss on Ignition	Soil	BS EN 12457	35.0	%
BTEX	Soil	BS EN 12457	14.0	%
Sum of PCBs	Soil	BS EN 12457	23.0	%
Mineral Oil	Soil	BS EN 12457	9.0	%
Total PAH	Soil	BS EN 12457	11.6	%
рН	Soil	BS EN 12457	0.28	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Arsenic	Leachate	BS EN 12457	18.7	%
Barium	Leachate	BS EN 12457	11.6	%
Cadmium	Leachate	BS EN 12457	20.3	%
Chromium	Leachate	BS EN 12457	18.3	%
Copper	Leachate	BS EN 12457	24.3	%
Mercury	Leachate	BS EN 12457	23.7	%
Molybdenum	Leachate	BS EN 12457	14.7	%
Nickel	Leachate	BS EN 12457	16.1	%
Lead	Leachate	BS EN 12457	15.7	%
Antimony	Leachate	BS EN 12457	17.9	%
Selenium	Leachate	BS EN 12457	22.0	%
Zinc	Leachate	BS EN 12457	17.4	%
Chloride	Leachate	BS EN 12457	15.3	%
Fluoride	Leachate	BS EN 12457	16.4	%
Sulphate	Leachate	BS EN 12457	20.6	%
TDS	Leachate	BS EN 12457	12.0	%
Phenol Index	Leachate	BS EN 12457	14.0	%
DOC	Leachate	BS EN 12457	10.0	%
Clay Content	Soil	BS 3882: 2015	15.0	%
Silt Content	Soil	BS 3882: 2015	14.0	%
Sand Content	Soil	BS 3882: 2015	13.0	%
Loss on Ignition	Soil	BS 3882: 2015	35.0	%
РН	Soil	BS 3882: 2015	0.14	Units
Carbonate	Soil	BS 3882: 2015	16.0	%
Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Zinc	Soil	BS 3882: 2015	14.9	%
Copper	Soil	BS 3882: 2015	16.0	%
Nickel	Soil	BS 3882: 2015	17.7	%
Available Sodium	Soil	BS 3882: 2015	23.0	%
Available Calcium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity	Soil	BS 3882: 2015	10.0	%




	NOTE: All locations are approximate
DRAFT DEVELOPMENT MASTERPLAN (Based upon Phase 2 Planning and Development Ltd drawing)	Date 22 SEPTEMBER 2022
LAND NORTH OF HUMBER DOUCY LANE, IPSWICH, SUFFOLK	Scale NOT TO SCALE
RSA GEOTECHNICS LIMITED	Drawing No 16118SI/1 Version A

RSA GEOTECHNICS LITD

APPENDIX 1

Fieldwork methodology

FIELDWORK METHODOLOGY

The fieldwork for the investigation was carried out generally in accordance with BS 5930: 2015+A1:2020 'Code of Practice for Ground Investigations' and the contamination sampling was carried out generally in accordance with BS 10175: 2011+A2: 2017, 'Investigation of Potentially Contaminated Sites – Code of Practice'.

Cable Percussion Boreholes

The cable percussion boreholes were drilled using conventional light cable percussion techniques. Small 'disturbed' samples and larger 'bulk' samples were retrieved and sealed into suitable containers at regular intervals during drilling for the purposes of further examination and for laboratory analysis. Undisturbed U100 samples and Standard Penetration Tests (SPTs) were undertaken at intervals to assess the relative density (N value) and undrained shear strength of the soils encountered. The results of the penetration tests are recorded as 'N' values and are given on the borehole logs.

Window Sampling

The window sampling was carried out using a small, track mounted, soil sampling rig which utilised a sliding hammer to drive steel tubes into the ground and hydraulic rams to extract them. Each of the window sample tubes recovered a core of soil from the ground. Representative samples were taken from the core at approximately 0.5 m intervals, for material identification and testing purposes, and sealed into suitable containers to prevent deterioration or moisture content loss. The soils encountered were logged on site by an experienced geotechnician. Hand shear vane tests were undertaken in cohesive soils.

DCP

The Dynamic cone penetrometer (DCP) testing was undertaken an 8 kg free fall hammer fitted to a set of metal rods. The hammer is lifted and dropped through a height of 575mm. The distance of penetration of a 60° cone tip fitted to the base of the rods is then recorded and the cycle repeated. Continuous measurements can be made down to a depth of approximately 850mm or when extension shafts are fitted to a maximum recommended depth of 2 metres. Where sub-pavement layers have different strengths, the boundaries can be identified and the thickness determined. Correlations have been established between measurements with the DCP and conventional in-situ CBR so that results can be interpreted and compared with CBR specifications for pavement design.

Machine excavated trial pitting and BRE DG 365 soakage trial pits

The soakage trial pits were excavated using a wheeled mechanical excavator under the supervision of an experienced geotechnician who described the soils encountered in detail as they were revealed. Representative disturbed and bulk samples were taken from the trial pits. A record was made of the groundwater conditions, together with the orientation and stability of each trial pit. The trial pits were excavated to undertake soakage tests in accordance with BRE Digest DG 365.

The pit should have vertical sides trimmed square and, if necessary for stability, should be filled with granular material. A full-depth, perforated, vertical observation tube is positioned in the pit so that water levels can be monitored with a dip tape. The trial pit is filled, and allowed to drain three times to near empty, with readings taken at intervals. The infiltration rate is calculated from the time taken to drain from 75% full to 25% full.

Gas and Groundwater Monitoring

Gas and groundwater monitoring was undertaken in wells installed in the window sample and cable percussion boreholes. Each well comprised of a slotted geowrapped section with gravel surround, to allow the percolation of groundwater and the transmission of ground gases, and an upper plain section of pipe, nominally 0.50 m long, with a granular bentonite surround, hydrated to form a bentonite clay seal, preventing the infiltration of surface waters down the installation.

The concentrations of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), hydrogen sulphide (H2S) and the positive, equalised or negative flow rate were recorded using a GA5000 Gas Analyser.

After the gas monitoring the water level within each installation was recorded relative to ground level, using an electronic dip tape.

APPENDIX 2

Risk assessment methodology and legislative background; Risk classification system; Published guidelines

RISK ASSESSMENT METHODOLOGY AND LEGISLATIVE BACKGROUND

The legislative document regarding land contamination is the 1995 Environment Act. Forming Part 2A of the Environmental Protection Act of 1990, this act created the framework for the identification and remediation of contaminated land. It established the Environment Agency as the overall National Enforcement Agency, with regional control provided by the Local Authorities.

This Act defines "contaminated land" as any land which appears by the Local Authority to be "in such a condition, by reason of substances, in, on or under the land that:

- significant harm is being caused or there is significant possibility of such harm being caused; or
- significant pollution of Controlled Waters is being caused, or there is significant possibility of such harm being caused."

The Act is supported by other key guidance including BS10175, 2011+A2:2017 and the National Planning Policy Framework, 2019. In relation to regulatory intervention (Part 2A) and 'voluntary' investigation (including redevelopment of sites which may be affected by contamination), the Model Procedures (CLR-11, Environment Agency 2004) provided a generic framework indicating key technical activities applicable in each of those contexts; these have been replaced by the online guidance Land Contamination Risk Management (LCRM) from GOV.UK. The management of land contamination broadly comprises three components, which are identified as 'Risk Assessment', 'Options Appraisal' and 'Implementation'. These in turn determine if any unacceptable risks exist, ascertain the most appropriate remediation strategy for the site and demonstrate that the strategy will be effective.

In accordance with this and other current guidance, where a 'land quality' risk assessment is required each 'Relevant Pollutant Linkage' (formerly referred to as 'source-pathway-receptor' framework), is separately identified and a level of risk attached. The risk assessment takes account of the local environment, end user behaviour patterns and the nature of the development in relation to proven 'unacceptable' risk. This is the approach supported by current guidance and therefore has been adopted in the assessment of this site.

The guidance requires a Phase 1 investigation or desk study to be undertaken as the first stage of the risk assessment. This derives potential sources, pathways and receptors for the site taking into account the proposed end use. It results in the generation of potential pollutant linkages which are documented in the form of an 'Outline Conceptual Model'. This is then used to direct and target a Phase 2 or intrusive investigation, if deemed necessary.

In order to classify the anticipated risk associated with the proposed development the classification system defined in Table A has been adopted (from CIRIA C552). The level of risk was determined by the product of the potential consequence (minor, mild, medium, severe) of the contaminant hazard and probability of it occurring (unlikely, low likelihood, likely, high likelihood). A risk level has been assigned to each possible pollutant linkage in accordance with Table B.

Table A – Defin	itions of consequence, probability and risk ratings
Potential conse	quence
Term	Description
Severe	Short term (acute) risk to human health likely to result in 'significant harm' as
	defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution
	of sensitive water resources. Catastrophic damage to buildings or property. Short-
	term risk to an ecosystem or organism forming part of that ecosystem.
Medium	Chronic damage to human health, or pollution of sensitive water resources,
	significant changes in an ecosystem or organism forming part of that ecosystem.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, building
	structures and services. Damage to sensitive buildings, structures, or the
	environment.
Minor	Harm, not necessarily significant, but that could result in financial loss or
	expenditure to resolve. Non-permanent human health effects easily prevented by
	use of personal protective clothing. Easily repairable damage to buildings, structures
	and services.
Probability	
Highly likely	The event appears very likely in the short term and almost inevitable over the long
	term, or there is evidence at the receptor of harm or pollution.
Likely	It is probable that an event will occur, or circumstances are such that the event in
	not inevitable, but possible in the short term and likely over the long term.
Low likelihood	Circumstances are possible under which an event could occur, but it is not certain
	even in the long term that an event would occur and it is less likely in the short term.
Unlikely	Circumstances are such that it is improbable the event would occur even in the long
	term.
Risk rating	
Term	Description
Very high risk	There is a high probability that severe harm could arise to a designated receptor
	from an identified hazard at the site without appropriate remedial action.
High risk	Harm is likely to arise to a designated receptor from an identified hazard at the site
	without appropriate remedial action.
Moderate risk	It is possible that without appropriate remedial action harm could arise to a
	designated receptor but it is relatively unlikely that any such harm would be severe,
	and if any harm were to occur it is more likely that such harm would be relatively
	mild.
Low risk	It is possible that harm could arise to a designated receptor from an identified
	hazard but is likely that at worst, this harm if realised would normally be mild.
Very Low/	The presence of an identified hazard does not give rise to the potential to cause
Negligible risk	significant harm to a designated receptor.

<u>Table B – Risk Matrix</u>			Consequence	
	Severe	Medium	Mild	Minor

Probability	Highly Likely	Very High	High	Moderate	Moderate/Low
	Likely	High	Moderate	Moderate/Low	Low
	Low Likelihood	Moderate	Moderate/Low	Low	Very Low/Negligible
	Unlikely	Moderate/Low	Low	Very Low/Negligible	Very Low/Negligible

The outcome of the intrusive investigation and subsequent 'land quality' risk assessment is the establishment of plausible relevant pollutant linkages shown in the form of a 'Refined Conceptual Model'. This is then used to determine the need for further investigation, or remediation to appropriately mitigate any determined unacceptable risks.

In accordance with the Model Procedures and Regulatory preference, detailed remedial measures should be provided in a separate report to the investigation and risk assessment generally referred to as a Remediation Method Statement (RMS).

The National Planning Policy Framework (NPPF) places responsibility with the Applicant and Developer to ensure that the land and development is suitable for the proposed purpose, and that unacceptable risks have been suitably mitigated.

Human Health Generic Risk Assessment

Generic risk assessment includes the comparison of concentrations of determinands measured in site soils with 'Tier 1' screening values derived from reference to current guidance, principally comprising Land Quality Management/Chartered Institute of Environmental Health (LQM/CIEH) 'Suitable for Use Levels (S4ULs) 2015, Defra Category 4 Screening Levels (C4SL) 2014 and CL:AIRE Generic Assessment Criteria (GAC) values 2010. Reference may be made to other sources where considered appropriate, including non-UK sources where no screening values are readily available, such as the USEPA Regional Screening Levels (RSLs).

Screening values must be appropriate to the site setting and/or proposals for development. 'Default' generic categories include 'Residential with home-grown produce'; 'Residential without home-grown produce'; 'Allotment'; 'Commercial'; 'Public Open Space_{residential}'; and 'Public Open Space_{park}'.

Generic screening values considered appropriate to the development proposals for the subject site have been tabulated and included within this section, together with their source.

For some projects it may be appropriate to derive site specific screening values using the Environment Agency Contaminated Land Exposure Assessment (CLEA) model or other tools, to more appropriately reflect site conditions, receptors and the context of exposure.

Screening values for organic determinands can be sensitive to the soil organic matter content and this is taken into account in their derivation.

The assessment of cumulative risk to human health from total petroleum hydrocarbons is undertaken through Hazard Index calculation based on the methodology of the EA 'UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils', Science Report P5-080/TR3. Hazard Indices greater than one typically require remedial action or further consideration.

Groundwater Risk Assessment

Generic assessment criteria for groundwater are principally derived from reference to Environmental Quality Standards or Drinking Water Standards, as appropriate for the site environs, or in the absence of such values from other sources as considered appropriate. Modelling of the fate and transport of contaminants in soil or groundwater and their potential effects on Controlled Waters may be appropriate depending on the sensitivity of the site setting.

<u>Asbestos</u>

There are currently no generic assessment criteria concentrations for asbestos in soils however industry guidance is contained within CIRIA C733 and CAR-SOIL 2012 (2016). It is recognised that the risk is proportional to the potential for fibre release, with a lower risk from asbestos in bonded form, in damp conditions and at low (trace) concentrations. The type of asbestos is also important, with blue asbestos (crocidolite) generally considered two orders of magnitude more hazardous than white asbestos (chrysotile), and brown asbestos (amosite) being in between. The current approach is to reduce exposure to asbestos as far as practically possible, both during siteworks and post-development. This is typically achieved through removal or the provision of a suitable break in pathway between source and receptor.

Ground Gas

Guidance with respect to risk assessment and protective measures for ground gases is contained within CIRIA C665, 2007 'Assessing risks posed by hazardous ground gases to buildings'; the Ground Gas Handbook, 2009; BS8485: 2015+A1:2019, 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings' and CL:AIRE Research Bulletin 'A Pragmatic Approach to Ground Gas Risk Assessment' (RB 17, 2012). Gas Screening Values are calculated using the recorded concentrations of methane and carbon dioxide from borehole well monitoring together with the flow rate from the borehole installations, to categorise the site with respect to the typical ground gas precautions anticipated to mitigate unacceptable risks.

Buried Concrete

The potential risk to buried concrete is assessed with reference to the guidance of BRE Special Digest 1 (SD-1), 2005, 'Concrete in Aggressive Ground'. This publication attributes a Design Sulphate Class and an Aggressive Chemical Environment for Concrete (ACEC) Class for the site under consideration, based upon the nature of the site, sulphate concentrations, pH values and mobility of groundwater.

Potable Water Pipes

Guidance on the selection of potable water supply pipework is contained within the UK Water Industry Research (UKWIR) report reference 10/WM/0321, 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites', and this has been adopted by a number of water authorities. The report recommends specific investigation of the proposed pipeline route and level, with laboratory analysis and associated risk assessment to determine the specification for the pipework, once the proposed route and level is confirmed.

Vegetation

Nickel, copper and zinc are phytotoxic and could therefore inhibit plant growth or establishment. In order to assess the risk posed to vegetation on site from these potentially phytotoxic contaminants the concentrations of copper, zinc and nickel are compared against values given in the British Standard BS 3882: 2015, 'Specification for topsoil', taking into account the typical pH of the site soils.

PUBLISHED GUIDELINES

- i) Land Contamination Risk Management (LCRM), GOV.UK
- ii) Contaminated Land Statutory Guidance, DEFRA, 2012
- iii) CIRIA C552 Contaminated Land Risk Assessment: A Guide to Good Practice, 2001
- iv) BS10175:2011+A2:2017 Investigation of potentially contaminated sites, code of practice
- v) LQM-CIEH Suitable for Use Levels (S4ULs) for Human Health Risk Assessment, 2015 (Publication Number S4UL3364)
- vi) EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment, 2010
- vii) Category 4 Screening Levels (C4SL) DEFRA 2014
- viii) The Water Supply (Water Quality) Regulations 2018 Drinking Water Standards
- ix) The Water Environment (Water Framework Directove) (England and Wales) Regulations 2017
- x) Environmental Quality Standards (EQS) for freshwaters; estuaries and coastal waters; specific pollutants; operational EQS; priority hazardous substances; priority substances and other pollutants
- xi) CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', 2008
- xii) Environment Agency Technical Advice to Third Parties on Pollution of Controlled Waters for Part 2A, Version 2, 2002
- xiii) BRE Special Digest 1, 'Concrete in Aggressive Ground', 2005
- xiv) UK Water Industry Research 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' Report Ref. No. 10/WM/03/21, 2011
- xv) BS 3882: 2015, 'Specification for topsoil' & BS8601:2013, 'Specification for subsoil and requirements for use'
- xvi) CIRIA C665 'Assessing risks posed by hazardous ground gases to buildings', 2007
- xvii) Environment Agency 'Guidance on the classification and assessment of waste' Technical Guidance WM3, 2015, (1st Edition V1.1), May 2018
- xviii) Environment Agency 'Soil Guideline Values for dioxins furans and dioxin-like PCBs in soil' Science Report SC050021, 2009
- xix) United States Environmental Protection Agency (USEPA) Regional Screening Values, 2021
- xx) Health Protection Agency 'Indicative Atlas of Radon', 2007
- xxi) BRE 211 'Radon: Protective Measures for New Buildings', 2015
- xxii) Water UK 'Contaminated Land Assessment Guidance' 2014
- xxiii) BS 8485:2015+A1:2019, 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'

- xxiv) CL:AIRE Research Bulletin 17 'A Pragmatic Approach to Ground Gas Risk Assessment', 2012
- xxv) CIRIA C733: 'Asbestos in soil and made ground: a guide to understanding and managing risks', 2014
- xxvi) CIRIA 765: 'Asbestos in soil and made ground: good practice site guide; 2017
- xxvii) AGS 'Assessment and control of asbestos risk in soil', 2021.

APPENDIX 3

Screening values for 'Residential with homegrown produce' and use

GENERIC SCREENING VALUES ADOPTED IN THE ASSESSMENT

HUMAN HEALTH SCREENING VALUES

Table 1 - Soil Screening Values, Residential with Homegrown Produce End Use

Determinand	Screenin	g Value (mg/	Source	
	Soil Orga			
	1%	2.5%	6%	
Arsenic	37	37	37	LQM/CIEH 2015
Barium	1300*	1300*	1300*	CL:AIRE GAC 2010
Beryllium	1.7	1.7	1.7	LQM/CIEH 2015
Boron	290	290	290	LQM/CIEH 2015
Cadmium	11	11	11	LQM/CIEH 2015
Chromium (III)	910	910	910	LQM/CIEH 2015
Chromium (VI)	6	6	6	LQM/CIEH 2015
Copper	2400	2400	2400	LQM/CIEH 2015
Lead	200	200	200	DEFRA 2014
Mercury	40	40	40	LQM/CIEH 2015
Nickel	130	130	130	LQM/CIEH 2015
Selenium	250	250	250	LQM/CIEH 2015
Vanadium	410	410	410	LQM/CIEH 2015
Zinc	3700	3700	3700	LQM/CIEH 2015
Cyanide	34	34	34	ATRISK SOIL
Phenol	120	200	380	LQM/CIEH 2015**
Benzene	0.087	0.17	0.37	LQM/CIEH 2015**
Toluene	130	290	660	LQM/CIEH 2015**
Ethylbenzene	47	110	260	LQM/CIEH 2015**
Xylenes	56	130	310	LQM/CIEH 2015**
MTBE	49	84	160	CL:AIRE GAC 2010
TPH CWG - Aliphatic >C5-C6	42	78	160	LQM/CIEH 2015**
TPH CWG - Aliphatic >C6-C8	100	230	530	LQM/CIEH 2015**
TPH CWG - Aliphatic >C8-C10	27	65	150	LQM/CIEH 2015**
TPH CWG - Aliphatic >C10-C12	130	330	760	LQM/CIEH 2015**
TPH CWG - Aliphatic >C12-C16	1100	2400	4300	LQM/CIEH 2015**
TPH CWG - Aliphatic >C16-C35	65000	92000	110000	LQM/CIEH 2015**
TPH CWG - Aliphatic >C35-C44	65000	92000	110000	LQM/CIEH 2015**
TPH CWG - Aromatic >C5-C7	70	140	300	LQM/CIEH 2015**
TPH CWG - Aromatic >C7-C8	130	290	660	LQM/CIEH 2015**
TPH CWG - Aromatic >C8-C10	34	83	190	LQM/CIEH 2015**
TPH CWG - Aromatic >C10-C12	74	180	380	LQM/CIEH 2015**
TPH CWG - Aromatic >C12-C16	140	330	660	LQM/CIEH 2015**
TPH CWG - Aromatic >C16-C21	260	540	930	LQM/CIEH 2015**
TPH CWG - Aromatic >C21-C35	1100	1500	1700	LQM/CIEH 2015**
TPH CWG - Aromatic >C35-C44	1100	1500	1700	LQM/CIEH 2015**

<u>Table 1 – Soil Screening Values, Residential with Homegrown Produce End Use continued</u>

Determinand	Screening	Value (mg/	kg)	Source
	Soil Organ			
	1%	2.5%	6%	
Naphthalene	2.3	5.6	13	LQM/CIEH 2015**
Acenaphthylene	170	420	920	LQM/CIEH 2015**
Acenaphthene	210	510	1100	LQM/CIEH 2015**
Fluorene	170	400	860	LQM/CIEH 2015**
Phenanthrene	95	220	440	LQM/CIEH 2015**
Anthracene	2400	5400	11000	LQM/CIEH 2015**
Fluoranthene	280	560	890	LQM/CIEH 2015**
Pyrene	620	1200	2000	LQM/CIEH 2015**
Benzo(a)anthracene	7.2	11	13	LQM/CIEH 2015**
Chrysene	15	22	27	LQM/CIEH 2015**
Benzo(b)fluoranthene	2.6	3.3	3.7	LQM/CIEH 2015**
Benzo(k)fluoranthene	77	93	100	LQM/CIEH 2015**
Benzo(a)pyrene	2.2	2.7	3.0	LQM/CIEH 2015**
Indeno(1,2,3-cd)pyrene	27	36	41	LQM/CIEH 2015**
Di-benzo(a,h)anthracene	0.24	0.28	0.3	LQM/CIEH 2015**
Benzo(g,h,i)perylene	320	340	350	LQM/CIEH 2015**
Chloromethane	0.0083	0.0098	0.013	CL:AIRE GAC 2010
Chloroethane	8.3	11	18	CL:AIRE GAC 2010
Vinyl Chloride	0.00064	0.00087	0.0014	LQM/CIEH 2015**
1,1-dichloroethene	0.23	0.4	0.82	CL:AIRE GAC 2010
Cis-1,2-dichloroethene	0.11	0.4	0.82	CL:AIRE GAC 2010
1,1-dichloroethane	2.4	3.9	7.4	CL:AIRE GAC 2010
Trichloromethane	0.91	1.7	3.4	LQM/CIEH 2015**
1,1,1-Trichloroethane	8.8	18	39	LQM/CIEH 2015**
	0.19	0.34	0.7	CL:AIRE GAC 2010
Trans-1,2-dichloroethene Tetrachloromethane	0.026	0.056	0.7	LQM/CIEH 2015**
	0.024	0.030	0.13	CL:AIRE GAC 2010
1,2-dichloropropane Trichloroethene				
	0.016	0.034	0.075	LQM/CIEH 2015**
Bromodichloromethane	0.016	0.03 1.2	0.061 2.7	CL:AIRE GAC 2010 CL:AIRE GAC 2010
1,1,2-Trichloroethane Tetrachloroethene	0.6			
Chlorobenzene	0.18	0.39	0.9	LQM/CIEH 2015**
	0.46	1	2.4	LQM/CIEH 2015**
1,1,1,2-Tetrachloroethane	1.2	2.8	6.4	LQM/CIEH 2015**
Styrene	8.1	19	43	CL:AIRE GAC 2010
1,1,2,2-Tetrachloroethane	1.6	3.4	7.5	LQM/CIEH 2015**
Isopropylbenzene	11	27	64	CL:AIRE GAC 2010
Bromobenzene	0.87	2	4.7	CL:AIRE GAC 2010
N-Propylbenzene	34	82	190	CL:AIRE GAC 2010
1,2,4-Trimethylbenzene	0.35	0.85	2	CL:AIRE GAC 2010
1,2,3-Trichlorobenzene	1.5	3.6	8.6	LQM/CIEH 2015**
1,3-Dichlorobenzene	0.4	1	2.3	LQM/CIEH 2015**
1,2-Dichlorobenzene	23	55	130	LQM/CIEH 2015**
1,4-Dichlorobenzene	61	150	350	LQM/CIEH 2015**
Hexachloroethane	0.2	0.48	1.1	CL:AIRE GAC 2010

<u>Table 1 – Soil Screening Values, Residential with Homegrown Produce End Use continued</u>

Determinand	Screenin	ng Value (mg	Source	
	Soil Orga	anic Matter		
	1%	2.5%	6%	
2,4-Dimethylphenol	19	43	97	CL:AIRE GAC 2010
1,2,4-Trichlorobenzene	2.6	6.4	15	LQM/CIEH 2015**
Hexachlorobutadiene	0.29	0.7	1.6	LQM/CIEH 2015**
2-Chloronaphthalene	3.7	9.2	22	CL:AIRE GAC 2010
2,6-Dinitrotoluene	0.78	1.7	3.9	CL:AIRE GAC 2010
2,4-Dinitrotoluene	1.5	3.2	7.2	CL:AIRE GAC 2010
Diethyl phthalate	120	260	570	CL:AIRE GAC 2010
Hexachlorobenzene	1.8	3.3	4.9	LQM/CIEH 2015**
Butyl benzyl phthalate	1400	3300	7200	CL:AIRE GAC 2010
Di-n-octylphthalate	2300	2800	3100	CL:AIRE GAC 2010
Bis(2-ethylhexyl)phthalate	280	610	1100	CL:AIRE GAC 2010
Pentachlorophenol	0.22	0.52	1.2	LQM/CIEH 2015**

^{*} Based on residential without home grown produce

^{**} Assumes no free product

APPENDIX 4

Landmark Envirocheck data search report

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

298514201_1_1

Customer Reference:

16118SI/RBIB

National Grid Reference:

618460, 246520

Slice:

Α

Site Area (Ha):

31.74

Search Buffer (m):

1000

Site Details:

Land North of Humber Doucy Lane IPSWICH IP4 3PZ

Client Details:

Mr G Bell RSA Geotechnics Ltd Ashburnham House 1 Maitland Road Lion Barn Estate Needham Market Suffolk IP6 8NZ

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	9
Hazardous Substances	-
Geological	11
Industrial Land Use	17
Sensitive Land Use	20
Data Currency	21
Data Suppliers	28
Useful Contacts	29

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination.

For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources

Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client. In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2022. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark,

subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Environment Agency & United Kingdom Research and Innovation 2022. © Natural Resources Wales & United Kingdom Research and Innovation 2022.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranfield University. © James Hutton Institute. Contains OS data © Crown copyright and database right 2022. Land & Property Services © Crown copyright and database right.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1	1	4	1	
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls					
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 3	Yes			
Pollution Incidents to Controlled Waters	pg 3				2
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances					
River Quality					
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions					
Water Industry Act Referrals					
Groundwater Vulnerability Map	pg 3	Yes	n/a	n/a	n/a
Groundwater Vulnerability - Soluble Rock Risk			n/a	n/a	n/a
Groundwater Vulnerability - Local Information			n/a	n/a	n/a
Bedrock Aquifer Designations	pg 4	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 4	Yes	n/a	n/a	n/a
Source Protection Zones	pg 4	1	1	1	
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 5	2	8	7	13

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 9		1	1	1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)					
Local Authority Landfill Coverage	pg 9	3	n/a	n/a	n/a
Local Authority Recorded Landfill Sites	pg 9		1	1	1
Potentially Infilled Land (Non-Water)					
Potentially Infilled Land (Water)	pg 10				1
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 11	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 11	Yes	Yes	Yes	Yes
BGS Recorded Mineral Sites	pg 12		1		3
BGS Urban Soil Chemistry	pg 13		Yes	Yes	Yes
BGS Urban Soil Chemistry Averages	pg 15	Yes			
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain	pg 15		Yes	n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 15	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards				n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 15	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 16	Yes		n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 16	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 17		2	3	9
Fuel Station Entries					
Points of Interest - Commercial Services	pg 18		1	2	
Points of Interest - Education and Health	pg 18		2		
Points of Interest - Manufacturing and Production	pg 18	2			1
Points of Interest - Public Infrastructure	pg 18		1	6	2
Points of Interest - Recreational and Environmental	pg 19			1	2
Gas Pipelines					
Underground Electrical Cables					

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas	pg 20			1	
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 20	4			
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A11NE (W)	0	1	618459 246521
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NW (NE)	169	1	618850 247250
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NW (NE)	181	1	618850 247300
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NW (N)	194	1	618800 247400
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NW (NE)	265	1	618850 247450
	BGS Groundwater Flooding Susceptibility	(**=)			
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NW (NE)	341	1	618950 247450
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE)	372	1	618950 247500
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A16NW (NE)	383	1	619000 247450
	BGS Groundwater Flooding Susceptibility	(/			2
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE)	410	1	619000 247500
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NE (NE)	447	1	619200 247200
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	(NE)	451	1	619050 247500
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A16NE (NE)	471	1	619200 247250
	BGS Groundwater Flooding Susceptibility	(* -=/			
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	(NE)	480	1	619050 247550
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A16NE (NE)	499	1	619200 247300
	Discharge Consents				
1	Operator: The Kesgrave Trading Company Limited Property Type: OFFICES ADMIN + SUPPORT Location: Tuddenham Road Business Centre Tuddenham Road, Ipswich, Suffolk, Ip4 3qh	A15NW (N)	0	2	618322 247135
	Authority: Environment Agency, Anglian Region Catchment Area: Reference: Npswqd010413 Permit Version: 1				
	Effective Date: 10th February 2010 Issued Date: 10th February 2010 Revocation Date: Not Supplied				
	Discharge Type: Sewage Discharges - Final/Treated Effluent - Not Water Company Discharge Freshwater Stream/River Environment: Trib Of The Biver Fyre				
	Receiving Water: Status: New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Positional Accuracy: Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consent Operator: Property Type: Location:	s Complete Timber Solutions Limited Domestic Property (Multiple) 1&2 Westerfield Farm Cottages, Humber Doucy Lane, Ipswich, Suffolk, Ip4	A15NW (N)	5	2	618300 247135
	Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	3qg Environment Agency, Anglian Region Not Supplied Eprhp3525xt 1 14th February 2011 14th February 2011 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Of River Fynn New issued under EPR 2010 Located by supplier to within 10m				
2	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	lan Lawrence & Nicola Catherine Tucker WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Westerfield House Cottage Humber Doucy Lane, Ipswich, Ip4 3qe, Ip4 3qe Environment Agency, Anglian Region Not Given Prenf10890 1 14th March 1997 14th March 1997 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary River Flynn Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A15SW (N)	3	2	618380 246810
3	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr Derke Noske Domestic Property (Single) Millbank House Tuddenham Lane, Rushmere St Andrew, Ipswich, Suffolk, Ip5 1du Environment Agency, Anglian Region River Gipping / River Jordan Eprjp3022xr 1 14th February 2013 14th February 2013 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Of River Fynn New issued under EPR 2010 Located by supplier to within 10m	A16SW (NE)	25	2	618926 246787
4	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S E Kent & Son Arable Farming Church Lane, Westerfield, Suffolk, Ip6 9be Environment Agency, Anglian Region Not Supplied Gwelf50669 1 31st March 1999 26th January 2001 Not Supplied Trade Discharge - Agricultural And Surface Onto Land Groundwater Deemed Groundwater Regulations Authorisation Located by supplier to within 10m	A15NW (N)	64	2	618310 247320

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mrs Ann Mccusker WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) 3 Villa Farm Cottages Lamberts Lane, Rushmere St Andrew, Ipswich, Suffolk, Ip5 1dt Environment Agency, Anglian Region River Fynn / River Lark (Burgh) Prenf20452 1 2nd February 2007 2nd February 2007 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River River Fynn New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A12NE (E)	266	2	619310 246680
	Nearest Surface Wa	ter Feature	A12NW (E)	0	-	618772 246551
6	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Road IPSWICH Environment Agency, Anglian Region Chemicals - Other Organic Not Supplied 27th January 1997 2808 Not Given Potential River Accidental Spillage/Leakage Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	686	2	618800 245700
6	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	Road Ipswich District Environment Agency, Anglian Region Chemicals - Other Organic Not Supplied 27th January 1997 2808 Not Given Potential River Accidental Spillage/Leakage Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	691	2	618800 245695
	Groundwater Vulne Combined Classification: Combined Vulnerability: Combined Aquifer: Pollutant Speed: Bedrock Flow: Dilution: Baseflow Index: Superficial Patchiness: Superficial Thickness: Superficial Recharge:	rability Map Secondary Superficial Aquifer - High Vulnerability High Productive Bedrock Aquifer, Productive Superficial Aquifer Intermediate Well Connected Fractures <300 mm/year >70% >90% >10m Low	A11NE (W)	0	3	618459 246521

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Groundwater Vulne	erability Map				
	Combined Classification:	Secondary Superficial Aquifer - High Vulnerability	A12NW (E)	0	3	619000 246521
	Combined Vulnerability: Combined Aquifer:	High Productive Bedrock Aquifer, Productive Superficial Aquifer				
	Pollutant Speed: Bedrock Flow: Dilution:	Intermediate Well Connected Fractures <300 mm/year				
	Baseflow Index: Superficial	>70% >90%				
	Patchiness: Superficial Thickness:	>10m				
	Superficial Recharge:	Low				
	Groundwater Vulne	erability Map				
	Combined Classification:	Secondary Superficial Aquifer - High Vulnerability	A15SE (N)	0	3	618459 247000
	Combined Vulnerability: Combined Aquifer:	High Productive Bedrock Aquifer, Productive Superficial Aquifer				
	Pollutant Speed: Bedrock Flow: Dilution:	Intermediate Well Connected Fractures <300 mm/year				
	Baseflow Index: Superficial	>70% >90%				
	Patchiness: Superficial Thickness:	>10m				
	Superficial Recharge:	High				
	Groundwater Vulne	erability Map				
	Combined Classification:	Secondary Superficial Aquifer - High Vulnerability	A15NE (N)	0	3	618484 247249
	Combined Vulnerability: Combined Aquifer:	High Productive Bedrock Aquifer, Productive Superficial Aquifer				
	Pollutant Speed: Bedrock Flow: Dilution:	Intermediate Well Connected Fractures <300 mm/year				
	Baseflow Index: Superficial	>70% >90%				
	Patchiness: Superficial Thickness:	>10m				
	Superficial Recharge:	High				
	Groundwater Vulne	erability - Soluble Rock Risk				
	Bedrock Aquifer De	esignations				
	Aquifer Designation:		A11NE (W)	0	3	618459 246521
	Superficial Aquifer Aquifer Designation:	Designations Secondary Aquifer - Undifferentiated	A11NE	0	3	618459
	0	Post control	(W)			246521
	Superficial Aquifer Aquifer Designation:	Designations Secondary Aquifer - A	A15NE (N)	0	3	618484 247249
	Source Protection	Zones	(14)			271243
7	Name: Source: Reference:	Not Supplied Environment Agency, Head Office Not Supplied	A11NE (W)	0	2	618459 246521
	Type:	Zone III (Total Catchment): The total area needed to support the discharge from the protected groundwater source.				
	Source Protection	Zones				
8	Name: Source: Reference:	Not Supplied Environment Agency, Head Office Not Supplied	A16NW (NE)	170	2	618967 247266
	Туре:	Zone II (Outer Protection Zone): Either 25% of the source area or a 400 day travel time whichever is greater.				

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
9	Source Protection Zones Name: Not Supplied Source: Environment Agency, Head Office Reference: Not Supplied Type: Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A16NW (NE)	342	2	619013 247399
	Extreme Flooding from Rivers or Sea without Defences None				
	Flooding from Rivers or Sea without Defences None				
	Areas Benefiting from Flood Defences None Flood Water Storage Areas				
	None Flood Defences				
10	None OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 27.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A12NW (E)	0	4	618772 246552
11	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 117.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Not Supplied Primacy: 2	A15SW (N)	0	4	618377 246817
12	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 239.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A12NW (E)	1	4	618787 246574
13	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 13.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16SW (NE)	2	4	618798 246872
14	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 205.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16SW (NE)	3	4	618744 246914
15	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 135.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16SW (NE)	4	4	618904 246785
16	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 23.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16SW (NE)	98	4	618857 247082

 rpr_ec_datasheet v53.0

A Landmark Information Group Service

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
17	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 261.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16NW (NE)	122	4	618803 247250
18	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 25.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A12NE (E)	244	4	619147 246715
19	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A12NE (E)	248	4	619146 246716
20	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 133.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14SE (NW)	280	4	618037 246824
21	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 14.8 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14SE (NW)	325	4	618018 246796
22	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 232.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A12NE (E)	327	4	619310 246752
23	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 195.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14SE (NW)	327	4	618019 246930
24	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 42.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14SE (NW)	333	4	618009 246784
25	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 405.3 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Deben Primacy: 1	A16NW (NE)	358	4	619052 247256

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
26	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 48.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14SE (NW)	482	4	617839 246920
27	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 77.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A10NE (W)	598	4	617749 246692
28	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.2 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A10NW (W)	674	4	617676 246665
29	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 165.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A10NW (W)	678	4	617672 246664
30	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 50.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14NW (NW)	854	4	617400 247237
31	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 137.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14NW (NW)	854	4	617425 247280
32	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 83.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A10NW (W)	917	4	617445 246579
33	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A14NW (NW)	935	4	617383 247445
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A13NE (NW)	941	4	617356 247399

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
35	OS Water Network Lines Watercourse Form: Inland river	A14NW	941	4	617378
	Watercourse Length: 57.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	(NW)			247447
	OS Water Network Lines				
36	Watercourse Form: Inland river Watercourse Length: 6.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A13NE (NW)	948	4	617353 247393
	OS Water Network Lines				
37	Watercourse Form: Inland river Watercourse Length: 94.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A13NE (NW)	949	4	617310 247308
	OS Water Network Lines				
38	Watercourse Form: Inland river Watercourse Length: 73.2 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A13NE (NW)	972	4	617275 247244
	OS Water Network Lines				
39	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Gipping Primacy: 1	A13NE (NW)	998	4	617274 247242

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
40	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Tuddenham Road, Ipswich Tuddenham Road Not Supplied As Supplied	A15SW (NW)	32	2	618205 247063
41	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Ipswich Aberdeen Way - Gretna Gardens Not Supplied As Supplied	A11SE (SE)	326	2	618663 246120
42	Historical Landfill S Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Norbury Road, Ipswich Norbury Road Not Supplied As Supplied	A8SW (S)	865	2	618812 245503
	Local Authority Lan Name:	dfill Coverage Suffolk County Council - Has supplied landfill data		0	5	618459 246521
	Local Authority Lan Name:	dfill Coverage Ipswich Borough Council - Has supplied landfill data		0	7	618459 246521
	Local Authority Lan Name:	dfill Coverage Suffolk Coastal District Council - Had landfill data but passed it to the relevant environment agency		0	6	618608 246794
43	Local Authority Rec Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure: Positional Accuracy: Boundary Quality:	orded Landfill Sites Tuddenham Road, Tuddenham Road, Westerfield, Ipswich IPS14 Ipswich Borough Council, Environmental Health Department Closed Not Supplied Pre 1974 Manually positioned within the geographical locality Moderate	A15SW (NW)	36	7	618199 247062
44	Local Authority Rec Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure: Positional Accuracy: Boundary Quality:	Aberdeen Way / Gretna Gardens, Aberdeen Way / Gretna Gardens, Ipswich IPS19 Ipswich Borough Council, Environmental Health Department Not Supplied Not Supplied Not Supplied Located by supplier to within 100m Not Applicable	A11SE (SE)	288	7	618600 246200

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Red	orded Landfill Sites				
45	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure: Positional Accuracy: Boundary Quality:	Norbury Road, Norbury Road, Ipswich IPS13 Ipswich Borough Council, Environmental Health Department Closed Not Supplied Pre 1974 Manually positioned within the geographical locality Moderate	A8SW (S)	830	7	618794 245548
	Potentially Infilled L	and (Water)				
46	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1938	A10NW (W)	641	-	617708 246675

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology				
	Description:	Thames Group	A11NE (SE)	0	1	618507 246467
	BGS 1:625,000 Solid	d Geology				
	Description:	Neogene To Quaternary Rocks (Undifferentiated)	A11NE (W)	0	1	618459 246521
	BGS Estimated Soil	•				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11NE (SE)	0	1	618487 246482
	Cadmium Concentration: Chromium	<1.8 mg/kg 40 - 60 mg/kg				
	Concentration:					
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A15SW (NW)	0	1	618204 246930
	Cadmium Concentration: Chromium	<1.8 mg/kg				
	Concentration: Lead Concentration:	20 - 40 mg/kg <100 mg/kg				
	Nickel Concentration:	<15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A11NE (W)	0	1	618459 246521
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A15NE (N)	76	1	618470 247332
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A16NW (NE)	218	1	618884 247328
	Arsenic Concentration: Cadmium	<15 mg/kg <1.8 mg/kg				
	Concentration: Chromium	40 - 60 mg/kg				
	Concentration:	<100 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source:	Chemistry British Geological Survey, National Geoscience Information Service	A12SE	246	1	619376
	Soil Sample Type: Arsenic Concentration:	Rural Soil 15 - 25 mg/kg	(E)			246205
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
		Chamietry				
	BGS Estimated Soil Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14NE (NW)	409	1	617912 247346
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	40 - 60 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Rural Soil <15 mg/kg	A14SW (W)	595	1	617609 246836
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium	20 - 40 mg/kg				
	Concentration: Lead Concentration: Nickel Concentration:	<100 mg/kg <15 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Rural Soil	A4NW (S)	936	1	618898 245389
	Arsenic Concentration:	15 - 25 mg/kg				
	Cadmium Concentration: Chromium	<1.8 mg/kg				
	Concentration: Lead Concentration:	40 - 60 mg/kg <100 mg/kg				
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Recorded Mine	eral Sites				
47	Site Name: Location: Source: Reference: Type: Status: Operator:	Allen'S Farm Pit Westerfield, Ipswich, Suffolk British Geological Survey, National Geoscience Information Service 213149 Opencast Ceased Unknown Operator	A16SW (NE)	125	1	618879 247099
	Operator Location: Periodic Type: Geology: Commodity:	Not Supplied Quaternary Lowestoft Formation Sand and Gravel Located by supplier to within 10m				
48	BGS Recorded Mine Site Name: Location: Source: Reference:	sral Sites Sidegate Lane Nursery Pit Ipswich, Suffolk British Geological Survey, National Geoscience Information Service 213169	A7SE (S)	847	1	618568 245591
	Type: Status: Operator: Operator Location:	Opencast Ceased Unknown Operator Not Supplied				
	Periodic Type: Geology: Commodity: Positional Accuracy:	Quaternary Lowestoft Formation Sand and Gravel Located by supplier to within 10m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Recorded Mine	eral Sites				
49	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Rushmere Road Pit Ipswich, Suffolk British Geological Survey, National Geoscience Information Service 213125 Opencast Ceased Unknown Operator Not Supplied Quaternary Lowestoft Formation Sand Located by supplier to within 10m	A8SW (S)	909	1	618746 245482
	BGS Recorded Mine	eral Sites				
50	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Redhouse Farm Sand Pit Ipswich, Suffolk British Geological Survey, National Geoscience Information Service 213162 Opencast Ceased Unknown Operator Not Supplied Quaternary Lowestoft Formation Sand Located by supplier to within 10m	A10NW (W)	931	1	617413 246701
	BGS Measured Urba	n Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:		A12SE (E)	123	1	619222 246221
	BGS Measured Urba Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:	British Geological Survey, National Geoscience Information Service 618210, 246775 Topsoil Ipswich 13.60 mg/kg	A11NW (NW)	132	1	618210 246775
	BGS Measured Urba	nn Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration: Cadmium Measured Concentration: Chromium Measured Concentration: Lead Measured Concentration: Nickel Measured Concentration:		A11SE (SE)	255	1	618574 246251

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured Concentration:	British Geological Survey, National Geoscience Information Service 619177, 245901 Topsoil Ipswich 11.90 mg/kg	A8NE (SE)	410	1	619177 245901
	Cadmium Measured Concentration: Chromium Measured Concentration:					
	Lead Measured Concentration: Nickel Measured	30.10 mg/kg 15.30 mg/kg				
	Concentration:					
	BGS Measured Urba					
	Source: Grid: Soil Sample Type: Sample Area:	British Geological Survey, National Geoscience Information Service 618296, 246109 Topsoil Ipswich	A11SW (S)	524	1	618296 246109
	Arsenic Measured Concentration: Cadmium Measured	13.50 mg/kg 0.30 mg/kg				
	Concentration: Chromium Measured Concentration:	45.00 mg/kg				
	Lead Measured Concentration: Nickel Measured	87.20 mg/kg 18.80 mg/kg				
	Concentration:					
	BGS Measured Urba	•				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured	British Geological Survey, National Geoscience Information Service 618949, 245741 Topsoil Ipswich 14.60 mg/kg	A8SW (SE)	594	1	618949 245741
	Concentration: Cadmium Measured Concentration: Chromium Measured					
	Concentration: Lead Measured Concentration:	62.50 mg/kg				
	Nickel Measured Concentration:	17.20 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured	British Geological Survey, National Geoscience Information Service 617708, 246312 Topsoil Ipswich 14.80 mg/kg	A10SE (W)	782	1	617708 246312
	Concentration: Cadmium Measured					
	Concentration: Chromium Measured					
	Concentration: Lead Measured	64.30 mg/kg				
	Concentration: Nickel Measured Concentration:	28.00 mg/kg				
	BGS Measured Urba	an Soil Chemistry				
	Source: Grid: Soil Sample Type: Sample Area: Arsenic Measured	British Geological Survey, National Geoscience Information Service 619380, 245416 Topsoil Ipswich 14.00 mg/kg	A4NE (SE)	926	1	619380 245416
	Concentration: Cadmium Measured					
	Concentration: Chromium Measured	36.60 mg/kg				
	Concentration: Lead Measured Concentration:	44.70 mg/kg				
	Concentration: Nickel Measured Concentration:	13.80 mg/kg				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urban Soil Chemistry					
	Source: Grid: Soil Sample Type:	British Geological Survey, National Geoscience Information Service 618182, 245691 Topsoil	A7SW (S)	936	1	618182 245691
	Sample Area: Arsenic Measured Concentration:	Ipswich 37.90 mg/kg				
	Cadmium Measured Concentration:					
	Chromium Measured Concentration: Lead Measured	144.00 mg/kg 133.80 mg/kg				
	Concentration: Nickel Measured	17.50 mg/kg				
	Concentration:					
	BGS Urban Soil Che		A 4 4 N I E			040450
	Source: Sample Area: Count Id:	British Geological Survey, National Geoscience Information Service Ipswich 200	A11NE (W)	0	1	618459 246521
	Arsenic Minimum Concentration: Arsenic Average	5.00 mg/kg 13.00 mg/kg				
	Concentration: Arsenic Maximum	48.00 mg/kg				
	Concentration: Cadmium Minimum Concentration:	0.10 mg/kg				
	Cadmium Average Concentration:	0.50 mg/kg				
	Cadmium Maximum Concentration: Chromium Minimum					
	Concentration: Chromium Average					
	Concentration: Chromium Maximum Concentration:	115.00 mg/kg				
	Lead Minimum Concentration:	12.00 mg/kg				
	Lead Average Concentration:	119.00 mg/kg				
	Lead Maximum Concentration: Nickel Minimum	954.00 mg/kg 3.00 mg/kg				
	Concentration: Nickel Average	15.00 mg/kg				
	Concentration: Nickel Maximum Concentration:	54.00 mg/kg				
	Coal Mining Affecte	d Areas				
	_	not be affected by coal mining				
	Non Coal Mining Ar	eas of Great Britain				
	Risk: Source:	Unlikely British Geological Survey, National Geoscience Information Service	A10NE (W)	159	1	618032 246667
	Potential for Collaps	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	-	essible Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	Potential for Ground Hazard Potential: Source:	d Dissolution Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	Potential for Landsl Hazard Potential: Source:	ide Ground Stability Hazards Low British Geological Survey, National Geoscience Information Service	A15NW (N)	0	1	618355 247254
	Potential for Landsl Hazard Potential: Source:	ide Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
		ide Ground Stability Hazards Low British Geological Survey, National Geoscience Information Service	A16NW (NE)	171	1	618853 247234

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Runnii	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	Potential for Shrink					
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A15NE (N)	0	1	618484 247249
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521
	Radon Potential - R	adon Potential - Radon Protection Measures				
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A11NE (W)	0	1	618459 246521

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 16 of 29

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
51	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Ipswich Pet Cemetery Cemetery Lodge, Tuddenham Road, Ipswich, IP4 3QH Pet Cemeteries & Crematoria Inactive Automatically positioned to the address	A15SW (NW)	76	-	618209 247092
52	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Cleanitz Llp 116, Renfrew Road, Ipswich, IP4 3HP Cleaning Services - Domestic Inactive Automatically positioned to the address	A12SW (SE)	110	-	618828 246281
53	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries R E Denison & Son Ltd Villa Farm, Tuddenham Lane, Rushmere St. Andrew, Ipswich, IP5 1DT Road Haulage Services Inactive Automatically positioned to the address	A12NE (E)	264	-	619219 246718
53	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Denison & Son Ltd Villa Farm, Tuddenham Lane, Rushmere St. Andrew, IPSWICH, IP5 1DT Road Haulage Services Inactive Automatically positioned to the address	A12NE (E)	264	-	619219 246718
54	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Promark 9, Sherborne Avenue, Ipswich, IP4 3DR Damp & Dry Rot Control Inactive Automatically positioned to the address	A11SW (SW)	268	-	618332 246402
55	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	J Mann 34, Renfrew Road, Ipswich, IP4 3EZ Refrigerators & Freezers - Servicing & Repairs Inactive Automatically positioned to the address	A8NW (SE)	550	-	618907 245804
56	Contemporary Trad Name: Location: Classification: Status:		A6NE (SW)	755	-	617981 246062
57	Contemporary Trad Name: Location: Classification: Status:		A7NW (SW)	781	-	618131 245910
58	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries East Coast Plants Ltd 242, Colchester Road, Ipswich, IP4 4QY Horticultural Equipment Maintenance & Repair Inactive Automatically positioned to the address	A8SW (S)	822	-	618821 245546
59	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Stylish Wood & Stone Kitchens Red House Farm, Tuddenham Road, Ipswich, IP4 3QL Kitchen Furniture Manufacturers Active Automatically positioned to the address	A10NW (W)	892	-	617457 246656
60	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries A Carpet Clean 4 U 2, Digby Road, Ipswich, IP4 3ND Carpet, Curtain & Upholstery Cleaners Inactive Automatically positioned to the address	A4NW (SE)	895	-	618997 245422
60	Contemporary Trad Name: Location: Classification: Status:		A4NW (SE)	930	-	619028 245383

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
60	Location: 6 Classification: 0 Status: I	Directory Entries S & E Brazier & Sons S, Digby Road, Ipswich, IP4 3ND Cash Registers & Check-Out Equipment nactive Automatically positioned to the address	A4NW (SE)	930	-	619028 245383
61	Location: 2 Classification: 0 Status: I	Directory Entries an Kenny 238, Brunswick Road, Ipswich, IP4 4DB Cabinet Makers nactive Automatically positioned to the address	A6NE (SW)	951	-	617809 245950
62	Location: USC Category: Class Code: USC Code:	ommercial Services Vitavia Jnit 2 Tuddenham Road Business Centre, Tuddenham Road, Ipswich, IP4 3QN Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A15SW (N)	13	8	618337 247028
63	Location: \Category: \Class Code: \Class Cod	ommercial Services Denison & Son Ltd Villa Farm, Tuddenham Lane, Rushmere St. Andrew, Ipswich, IP5 1DT Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A12NE (E)	264	8	619219 246718
63	Location: \Category: \Class Code:	ommercial Services R E Denison & Son Ltd Villa Cottage, Tuddenham Lane, Rushmere St. Andrew, Ipswich, IP5 1DT Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A12NE (E)	270	8	619279 246703
64	Location: I Category: A Class Code: F	ducation and Health Pet Cemetery P4 Animal Welfare Pet Cemeteries and Crematoria Positioned to address or location	A15NW (NW)	94	8	618176 247121
64	Location: N Category: A Class Code: F	ducation and Health Pet Cemetery Not Supplied Animal Welfare Pet Cemeteries and Crematoria Positioned to an adjacent address or location	A15SW (NW)	99	8	618175 247105
65	Name: E Location: I Category: I Class Code: E	anufacturing and Production Business Centre P4 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A15SW (N)	0	8	618380 247097
65	Name: S Location: I Category: I Class Code: E	anufacturing and Production Solar Panel P4 ndustrial Features Energy Production Positioned to an adjacent address or location	A15SW (N)	0	8	618346 247082
66	Name: S Location: 2 Category: E Class Code: S	anufacturing and Production Stone Age Granite 213 Rushmere Road, Ipswich, IP4 3LN Extractive Industries Stone Quarrying and Preparation Positioned to address or location	A8SE (SE)	634	8	619184 245676
67	Location: National Category: I Class Code:	ublic Infrastructure Pet Cemetery Not Supplied Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A15NW (NW)	95	8	618175 247122
68	Location: National Category: I Class Code:	ublic Infrastructure Garden of Remembrance Not Supplied Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	325	8	618027 246853

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
68	Location: I Category: I Class Code: 0	ublic Infrastructure Millennium Cemetery IP4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	337	8	618016 246860
68	Location: I Category: I Class Code: 0	ublic Infrastructure Garden of Remembrance IP4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	340	8	618011 246852
68	Location: I Category: I Class Code: 0	ublic Infrastructure Garden of Remembrance P4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	408	8	617944 246863
69	Location: I Category: I Class Code: 0	ublic Infrastructure Millennium Cemetary Not Supplied Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	484	8	617861 246829
69	Location: I Category: I Class Code: 0	ublic Infrastructure Millennium Cemetery IP4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A14SE (NW)	498	8	617847 246829
70	Location: Category: Class Code:	ublic Infrastructure Suffolk Fire Service Colchester Road, Ipswich, IP4 4SS Central and Local Government Fire Brigade Stations Positioned to address or location	A7NW (SW)	718	8	618086 246023
70	Location: I Category: Class Code: I	ublic Infrastructure Colchester Road Fire Station Fire Station, Colchester Road, Ipswich, IP4 4SS Central and Local Government Fire Brigade Stations Positioned to address or location	A7NW (SW)	718	8	618086 246023
71	Name: I Location: I Category: I Class Code: I	ecreational and Environmental Play Area IP4 Recreational Playgrounds Positioned to an adjacent address or location	A8NE (SE)	476	8	619089 245833
72	Name: I Location: 0 Category: I Class Code: I	ecreational and Environmental Playground Colchester Road, IP4 Recreational Playgrounds Positioned to address or location	A7NW (S)	674	8	618301 245925
72	Name: I Location: I Category: I Class Code: I	ecreational and Environmental Playground Not Supplied Recreational Playgrounds Positioned to an adjacent address or location	A7NW (S)	680	8	618291 245925

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Environmentally S	Sensitive Areas				
73	Name: Multiple Areas: Total Area (m2): Source:	Suffolk River Valleys (decommissioned) Y 46059991.71 Natural England	A16NW (NE)	340	9	619018 247283
	Nitrate Vulnerable	Zones				
74	Name: Description: Source:	Bucklesham Mill River Nvz Surface Water Environment Agency, Head Office	A11NE (E)	0	3	618600 246521
	Nitrate Vulnerable	Zones				
75	Name: Description: Source:	Sandlings And Chelmsford Groundwater Environment Agency, Head Office	A11NE (W)	0	3	618459 246521
	Nitrate Vulnerable	e Zones				
76	Name: Description: Source:	Lark/Fynn Nvz Surface Water Environment Agency, Head Office	A11NE (NE)	0	3	618518 246595
	Nitrate Vulnerable	Zones				
77	Name: Description: Source:	River Gipping Nvz Surface Water Environment Agency, Head Office	A11NE (N)	0	3	618450 246550

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 20 of 29

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Babergh District Council - Environmental Services	January 2020	Annual Rolling Update
Environment Agency - Head Office	June 2020	Annually
East Suffolk Council	March 2015	Annual Rolling Updat
Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department	October 2017	Annual Rolling Updat
pswich Borough Council - Environmental Health Department	September 2017	Annual Rolling Updat
Discharge Consents	A meth 0000	O considerable
Environment Agency - Anglian Region	April 2022	Quarterly
Enforcement and Prohibition Notices Environment Agency - Anglian Region	March 2013	
	IVIAICII 2013	
ntegrated Pollution Controls	January 2000	
Environment Agency - Anglian Region	January 2009	
ntegrated Pollution Prevention And Control	April 2022	Outortorly
Environment Agency - Anglian Region	April 2022	Quarterly
Local Authority Integrated Pollution Prevention And Control Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health	April 2014	Variable
Department		
Babergh District Council - Environmental Services	June 2014	Variable
East Suffolk Council	May 2014	Variable
pswich Borough Council - Environmental Health Department	October 2014	Variable
Local Authority Pollution Prevention and Controls		
Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department	April 2014	Annual Rolling Updat
Babergh District Council - Environmental Services	June 2014	Not Applicable
East Suffolk Council	May 2014	Annual Rolling Update
pswich Borough Council - Environmental Health Department	October 2014	Annual Rolling Updat
Local Authority Pollution Prevention and Control Enforcements		
Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department	April 2014	Variable
Babergh District Council - Environmental Services	June 2014	Variable
East Suffolk Council	May 2014	Variable
pswich Borough Council - Environmental Health Department	October 2014	Variable
Nearest Surface Water Feature		
Ordnance Survey	May 2022	
Pollution Incidents to Controlled Waters		
Environment Agency - Anglian Region	September 1999	
Prosecutions Relating to Authorised Processes		
Environment Agency - Anglian Region	July 2015	
Prosecutions Relating to Controlled Waters Environment Agency - Anglian Region	March 2013	
Registered Radioactive Substances	IVIAICIT 2013	
Environment Agency - Anglian Region	June 2016	As notified
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		1
Environment Agency - Head Office	April 2012	
River Quality Chemistry Sampling Points	-	
Environment Agency - Head Office	April 2012	
Substantiated Pollution Incident Register		
Environment Agency - Anglian Region - Eastern Area	April 2022	Quarterly
Water Abstractions		
Environment Agency - Anglian Region	July 2022	Quarterly

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 21 of 29

Agency & Hydrological	Version	Update Cycle
Water Industry Act Referrals		
Environment Agency - Anglian Region	October 2017	
Groundwater Vulnerability Map		
Environment Agency - Head Office	June 2018	As notified
Groundwater Vulnerability - Soluble Rock Risk		
Environment Agency - Head Office	June 2018	As notified
Bedrock Aquifer Designations		
Environment Agency - Head Office	January 2018	Annually
Superficial Aquifer Designations		
Environment Agency - Head Office	January 2018	Annually
Source Protection Zones		
Environment Agency - Head Office	May 2021	Bi-Annually
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2022	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2022	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	May 2022	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	May 2022	Quarterly
Flood Defences		
Environment Agency - Head Office	May 2022	Quarterly
OS Water Network Lines		
Ordnance Survey	April 2022	Quarterly
Surface Water 1 in 30 year Flood Extent		
Environment Agency - Head Office	May 2018	Annually
Surface Water 1 in 100 year Flood Extent		
Environment Agency - Head Office	May 2018	Annually
Surface Water 1 in 1000 year Flood Extent		
Environment Agency - Head Office	May 2018	Annually
Surface Water Suitability		
Environment Agency - Head Office	February 2016	Annually
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 22 of 29

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Environment Agency - Head Office	April 2022	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - Anglian Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - Anglian Region - Eastern Area	April 2022	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - Anglian Region - Eastern Area	April 2022	Quarterly
Local Authority Landfill Coverage		
Babergh District Council - Environmental Services	February 2003	Not Applicable
East Suffolk Council	February 2003	Not Applicable
Ipswich Borough Council - Environmental Health Department	February 2003	Not Applicable
Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department	February 2003	Not Applicable
Suffolk County Council	February 2003	Not Applicable
Local Authority Recorded Landfill Sites		
Babergh District Council - Environmental Services	October 2018	
East Suffolk Council	October 2018	
Ipswich Borough Council - Environmental Health Department	October 2018	
Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department	October 2018	
Suffolk County Council	October 2018	
Potentially Infilled Land (Non-Water)		
Landmark Information Group Limited	December 1999	Not Applicable
Potentially Infilled Land (Water)		
Landmark Information Group Limited	December 1999	
Registered Landfill Sites		
Environment Agency - Anglian Region - Eastern Area	March 2006	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - Anglian Region - Eastern Area	April 2018	
Registered Waste Treatment or Disposal Sites		
Environment Agency - Anglian Region - Eastern Area	June 2015	

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 23 of 29

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	January 2022	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	Annually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
Planning Hazardous Substance Enforcements		
Suffolk County Council - Environment and Transport	February 2006	Annual Rolling Update
Babergh District Council - Planning Department	February 2016	Variable
East Suffolk Council	February 2016	Variable
Ipswich Borough Council	February 2016	Variable
Suffolk Coastal District Council (now part of East Suffolk Council)	February 2016	Variable
Planning Hazardous Substance Consents		
Suffolk County Council - Environment and Transport	February 2006	Annual Rolling Update
Babergh District Council - Planning Department	February 2016	Variable
East Suffolk Council	February 2016	Variable
Ipswich Borough Council	February 2016	Variable
Suffolk Coastal District Council (now part of East Suffolk Council)	February 2016	Variable

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 24 of 29

Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	As notified
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	May 2022	Bi-Annually
BGS Urban Soil Chemistry		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
BGS Urban Soil Chemistry Averages		
British Geological Survey - National Geoscience Information Service	December 2015	As notified
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified
Coal Mining Affected Areas		
The Coal Authority - Property Searches	March 2014	Annual Rolling Update
Mining Instability		
Ove Arup & Partners	June 1998	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Radon Potential - Radon Affected Areas		
British Geological Survey - National Geoscience Information Service	July 2011	Annually
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	July 2011	Annually

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 25 of 29

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	April 2022	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	June 2022	Quarterly
Gas Pipelines		
National Grid	October 2021	Bi-Annually
Points of Interest - Commercial Services		
PointX	June 2022	Quarterly
Points of Interest - Education and Health		
PointX	June 2022	Quarterly
Points of Interest - Manufacturing and Production		
PointX	June 2022	Quarterly
Points of Interest - Public Infrastructure		
PointX	June 2022	Quarterly
Points of Interest - Recreational and Environmental		
PointX	June 2022	Quarterly
Underground Electrical Cables		
National Grid	May 2021	Bi-Annually

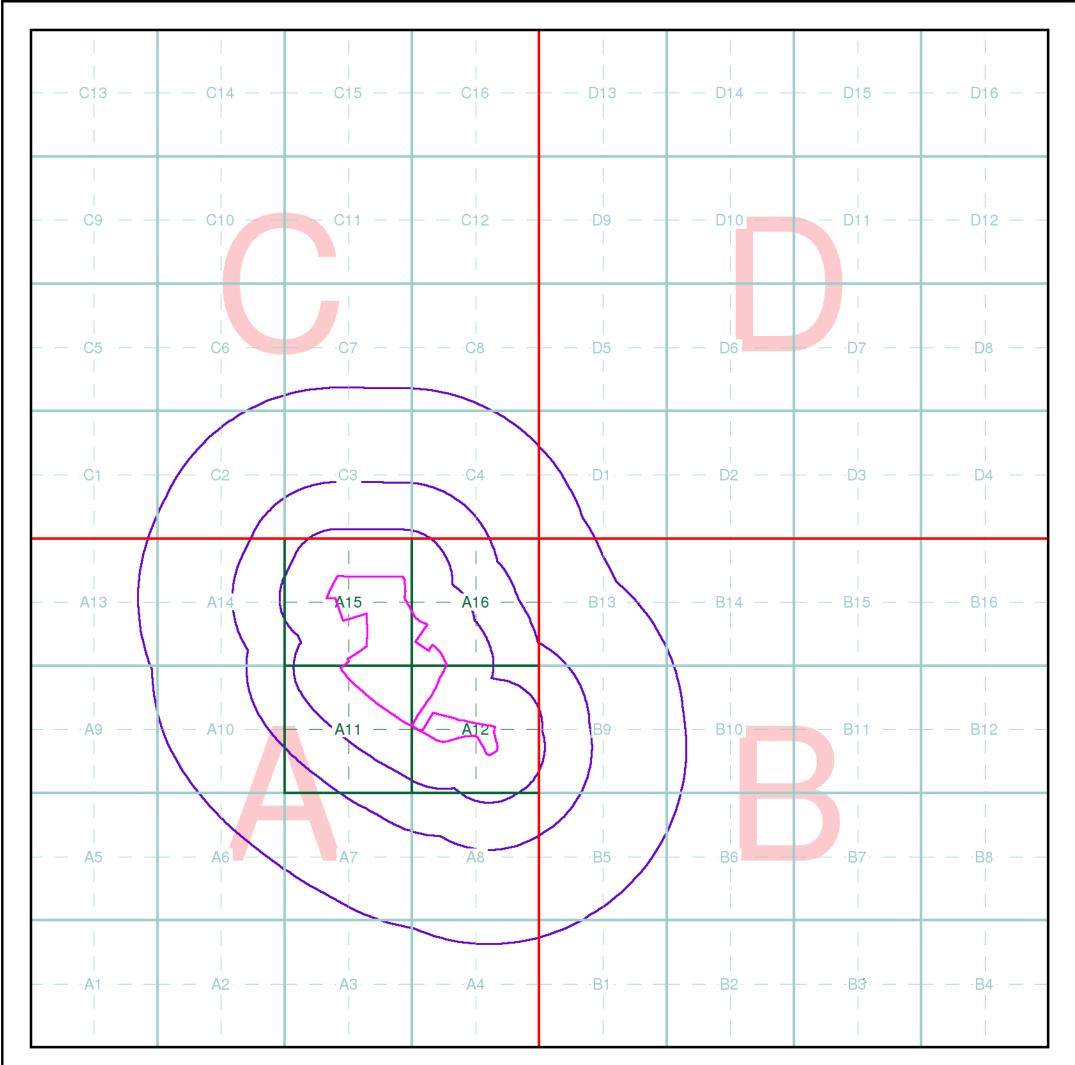
Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 26 of 29

Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural England	February 2021	Bi-Annually
Areas of Adopted Green Belt		
Babergh District Council - Planning Department	October 2020	Quarterly
East Suffolk Council	October 2020	Quarterly
Ipswich Borough Council	October 2020	Quarterly
Suffolk Coastal District Council (now part of East Suffolk Council)	October 2020	Quarterly
Areas of Unadopted Green Belt		
Babergh District Council - Planning Department	October 2020	Quarterly
East Suffolk Council	October 2020	Quarterly
Ipswich Borough Council	October 2020	Quarterly
Suffolk Coastal District Council (now part of East Suffolk Council)	October 2020	Quarterly
Areas of Outstanding Natural Beauty		
Natural England	January 2021	Bi-Annually
Environmentally Sensitive Areas		
Natural England	January 2017	
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	February 2021	Bi-Annually
Marine Nature Reserves		
Natural England	July 2019	Bi-Annually
National Nature Reserves		
Natural England	January 2021	Bi-Annually
National Parks		
Natural England	February 2018	Bi-Annually
Nitrate Sensitive Areas		
Natural England	April 2016	Not Applicable
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	April 2016	
Environment Agency - Head Office	June 2017	Bi-Annually
Ramsar Sites		
Natural England	August 2020	Bi-Annually
Sites of Special Scientific Interest		
Natural England	February 2021	Bi-Annually
Special Areas of Conservation	•	
Natural England	July 2020	Bi-Annually
Special Protection Areas	,	,
Natural England	February 2021	Bi-Annually

Order Number: 298514201_1_1 Date: 18-Jul-2022 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 27 of 29

Data Suppliers

A selection of organisations who provide data within this report


Data Supplier	Data Supplier Logo
Ordnance Survey	Map dota
Environment Agency	Environment
Scottish Environment Protection Agency	SEPA
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology
Natural Resources Wales	Cytoeth Natural Cyrru Hassorces Valural
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE
Natural England	LATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	Stantec

Useful Contacts

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
3	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
4	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
5	Suffolk County Council St Edmund House, County Hall, Ipswich, Suffolk, IP4 1LZ	Telephone: 01473 583000 Fax: 01473 230240 Website: www.suffolkcc.gov.uk
6	Suffolk Coastal District Council (now part of East Suffolk Council) - Environmental Health Department Council Offices, Melton Hill, Woodbridge, Suffolk, IP12 1AU	Telephone: 01394 383789 extn 2238 Fax: 01394 385100 Website: www.suffolkcoastal.gov.uk
7	Ipswich Borough Council - Environmental Health Department Grafton House, 15-17 Russell Road, Ipswich, Suffolk, IP1 2DE	Telephone: 01473 432000 Fax: 01473 432522 Email: enquiry@ipswich.gov.uk Website: www.ipswich.gov.uk
8	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website: www.pointx.co.uk
9	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

Index Map

For ease of identification, your site and buffer have been split into Slices, Segments and Quadrants. These are illustrated on the Index Map opposite and explained further below.

Slic

Each slice represents a 1:10,000 plot area (2.7km x 2.7km) for your site and buffer. A large site and buffer may be made up of several slices (represented by a red outline), that are referenced by letters of the alphabet, starting from the bottom left corner of the slice "grid". This grid does not relate to National Grid lines but is designed to give best fit over the site and buffer.

Segment

A segment represents a 1:2,500 plot area. Segments that have plot files associated with them are shown in dark green, others in light blue. These are numbered from the bottom left hand corner within each slice.

Quadrant

A quadrant is a quarter of a segment. These are labelled as NW, NE, SW, SE and are referenced in the datasheet to allow features to be quickly located on plots. Therefore a feature that has a quadrant reference of A7NW will be in Slice A, Segment 7 and the NW Quadrant.

A selection of organisations who provide data within this report:

Envirocheck reports are compiled from 136 different sources of data.

Client Details

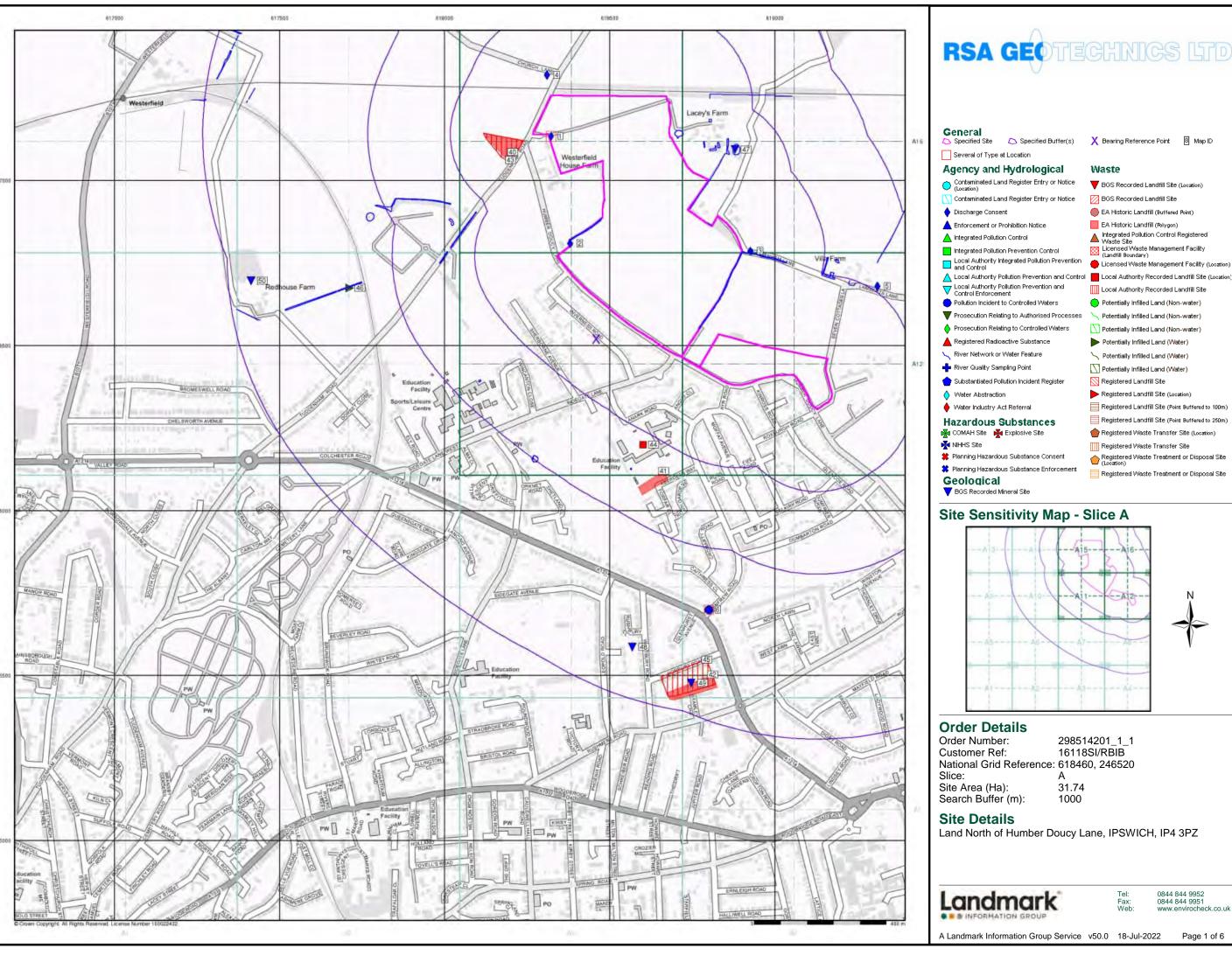
Mr G Bell, RSA Geotechnics Ltd, Ashburnham House, 1 Maitland Road, Lion Barn Estate, Needham Market, Suffolk, IP6 8NZ

Order Details

Order Number: 298514201_1_1
Customer Ref: 16118SI/RBIB
National Grid Reference: 618650, 246830
Site Area (Ha): 31.74

Site Area (Ha): 31.74 Search Buffer (m): 1000

Site Details


Land North of Humber Doucy Lane, IPSWICH, IP4 3PZ

Full Terms and Conditions can be found on the following link: http://www.landmarkinfo.co.uk/Terms/Show/515

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 18-Jul-2022 Page 1 of 1

BGS Recorded Landfill Site (Location)

▲ Integrated Pollution Control Registered Waste Site Licensed Waste Management Facility (Landfill Boundary)

Local Authority Recorded Landfill Site

Potentially Infilled Land (Non-water)

Yetentially Infilled Land (Non-water)

Potentially Infilled Land (Non-water)

Potentially Infilled Land (Water)

Yotentially Infilled Land (Water)

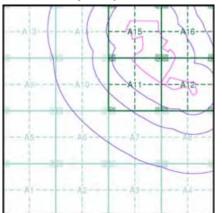
Potentially Infilled Land (Water)

Registered Waste Transfer Site

Registered Landfill Site (Point Buffered to 100m)

Registered Landfill Site (Point Buffered to 250m)

Registered Waste Treatment or Disposal Site (Location)


Registered Waste Treatment or Disposal Site

Registered Waste Transfer Site (Location)

Registered Landfill Site Registered Landfill Site (Location)

BGS Recorded Landfill Site EA Historic Landfill (Buffered Point)

EA Historic Landfill (Polygon)

298514201_1_1 16118SI/RBIB National Grid Reference: 618460, 246520

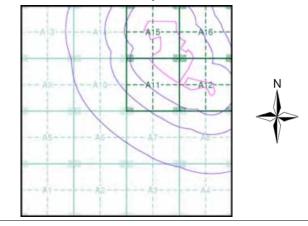
31.74 1000

Land North of Humber Doucy Lane, IPSWICH, IP4 3PZ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 18-Jul-2022 Page 1 of 6

Industrial Land Use Map


General

Specified Site Specified Buffer(s) X Bearing Reference Point

Industrial Land Use

- ** Contemporary Trade Directory Entry
- ★ Fuel Station Entry
- points of Interest Commercial Services
- 🛊 Points of Interest Education and Health
- 🜟 Points of Interest Manufacturing and Production
- roints of Interest Public Infrastructure
- 🛊 Points of Interest Recreational and Environmental
- Underground Electrical Cables

Industrial Land Use Map - Slice A

Order Details

Order Number: 298514201_1_1
Customer Ref: 16118SI/RBIB
National Grid Reference: 618460, 246520

Slice:

Site Area (Ha): Search Buffer (m): 31.74 1000

Site Details


Land North of Humber Doucy Lane, IPSWICH, IP4 3PZ

Landmark'

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 18-Jul-2022

Page 2 of 6

General

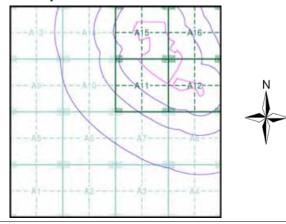
Necified Site

Specified Buffer(s)

X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)


Flooding from Rivers or Sea without Defences (Zone 3)

Area Benefiting from Flood Defence

Flood Water Storage Areas

--- Flood Defence

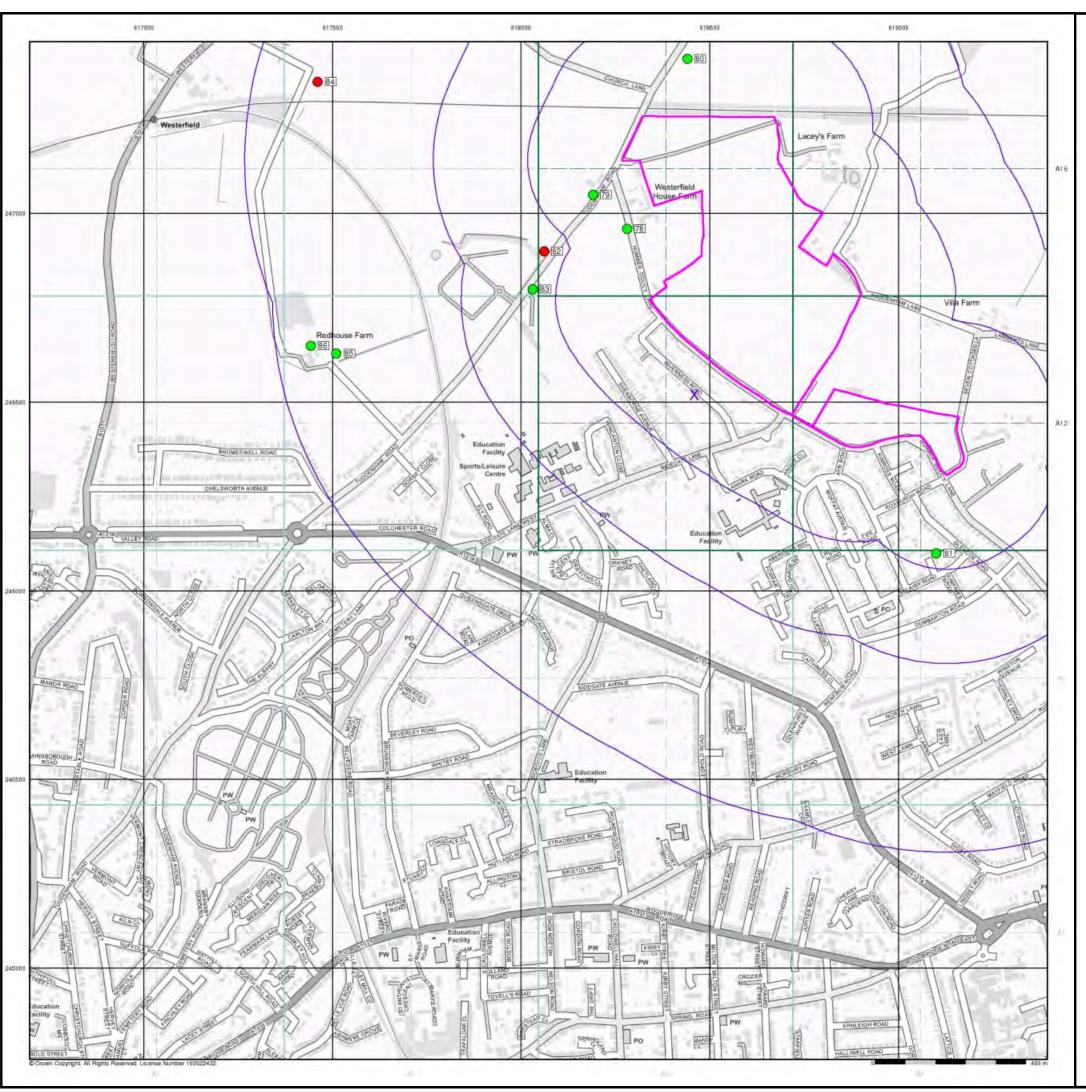
Flood Map - Slice A

Order Details

Order Number: 298514201_1_1
Customer Ref: 16118SI/RBIB
National Grid Reference: 618460, 246520

Slice:

Site Area (Ha): 31.74 Search Buffer (m): 1000


Site Details

Land North of Humber Doucy Lane, IPSWICH, IP4 3PZ

Landmark*

el: 0844 844 9952 ax: 0844 844 9951 /eb: www.envirocheck.co.uk

A Landmark Information Group Service v50.0 18-Jul-2022 Page 3 of 6

General

Necified Site

Specified Buffer(s)

X Bearing Reference Point

8 Map ID

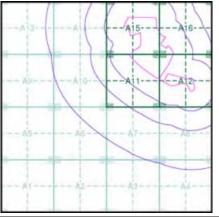
Several of Type at Location

Agency and Hydrological (Boreholes)

BGS Borehole Depth 0 - 10m

BGS Borehole Depth 10 - 30m

BGS Borehole Depth 30m +


Confidential

Other

For Borehole information please refer to the Borehole .csv file which accompanied this slice.

A copy of the BGS Borehole Ordering Form is available to download from the Support section of www.envirocheck.co.uk.

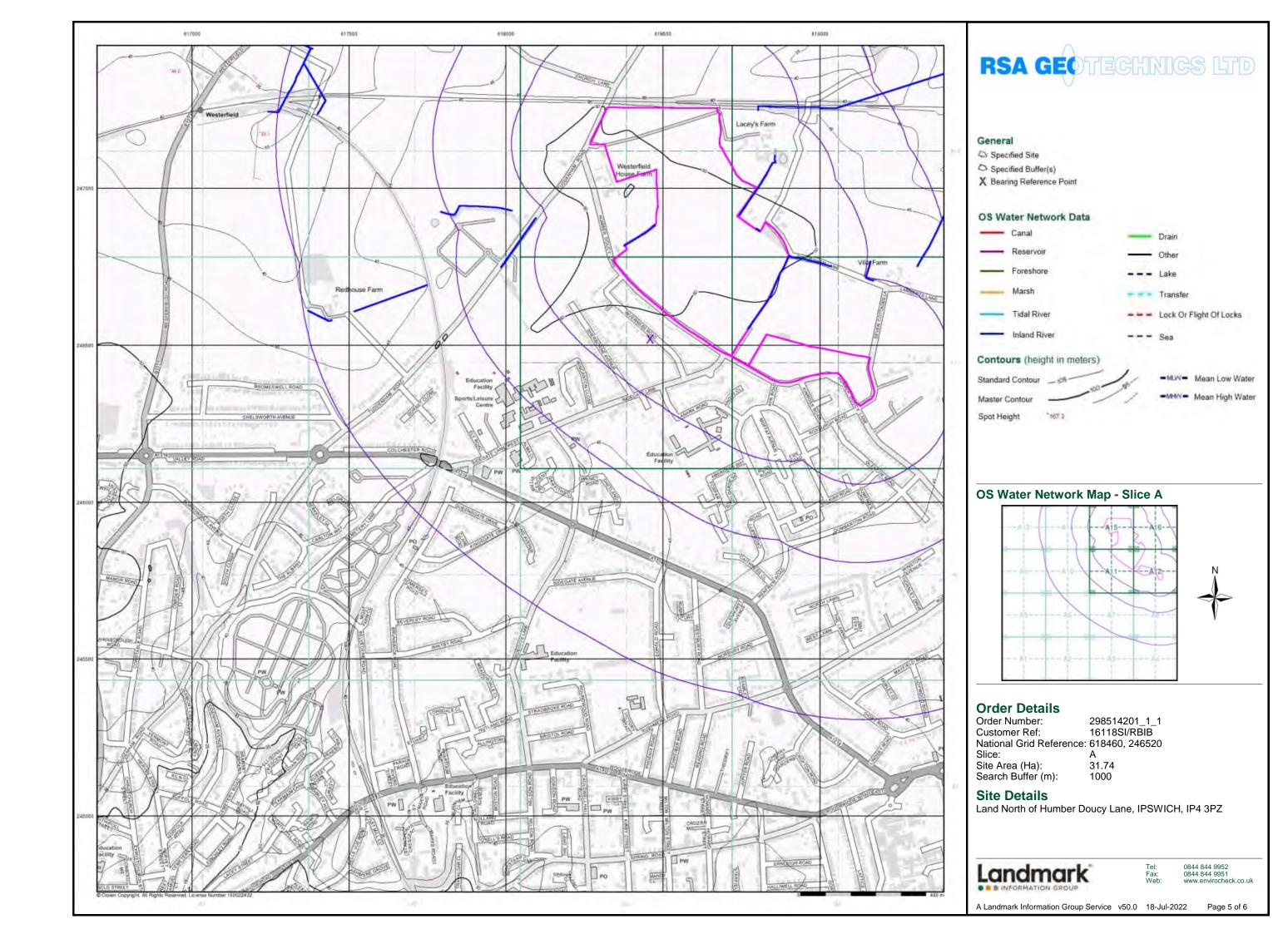
Borehole Map - Slice A

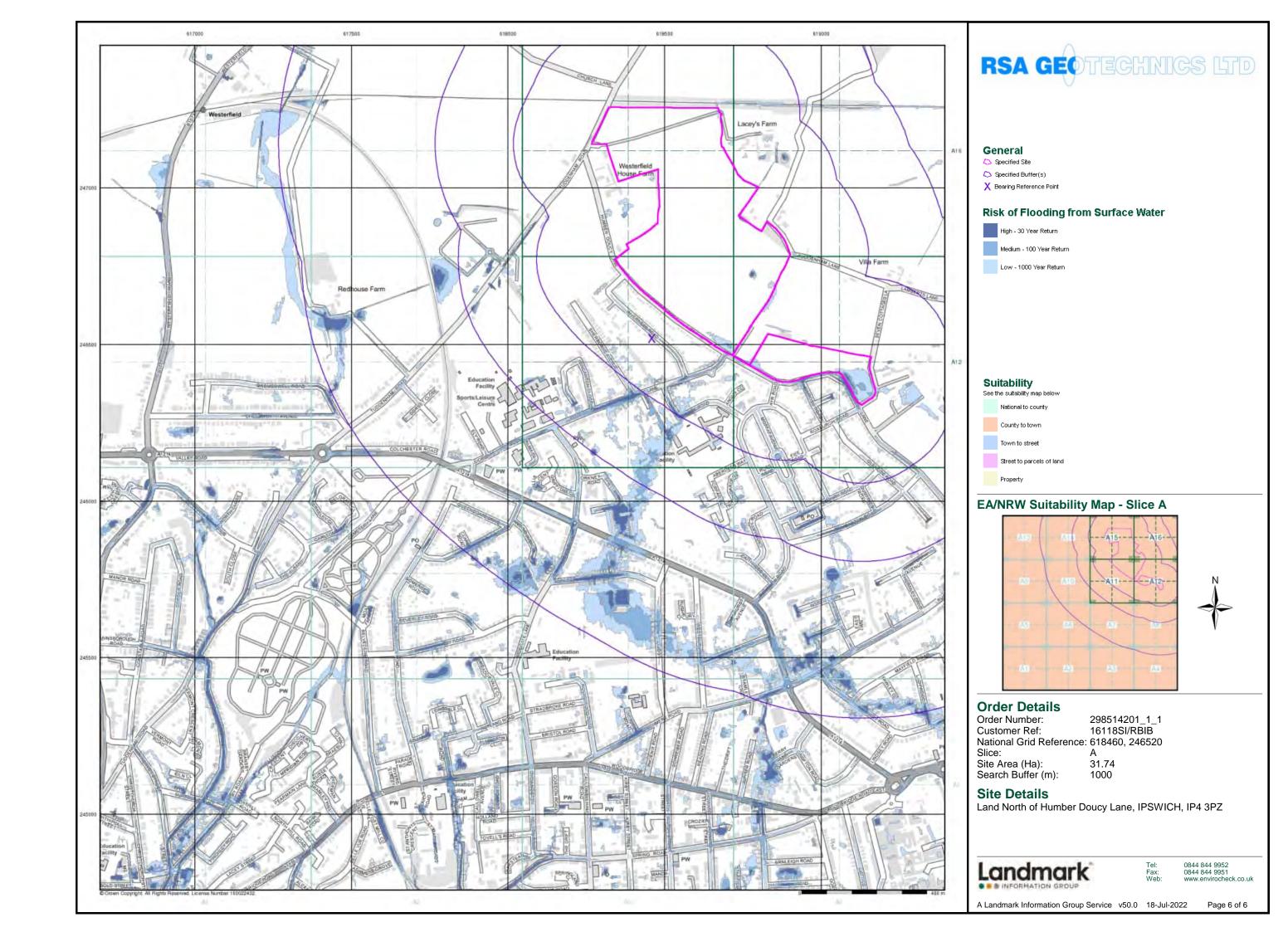
Order Details

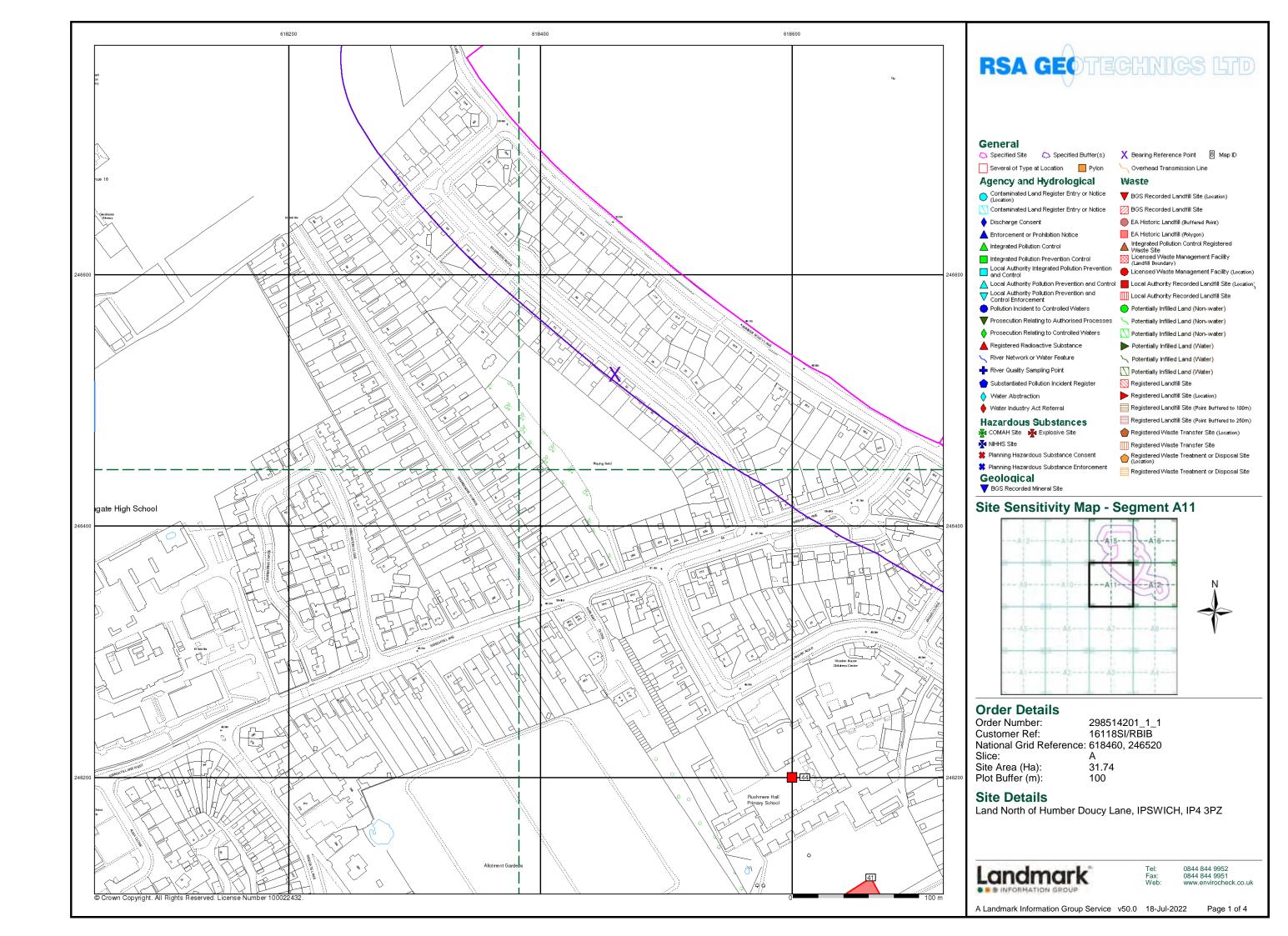
Order Number: 298514201_1_1
Customer Ref: 16118SI/RBIB
National Grid Reference: 618460, 246520

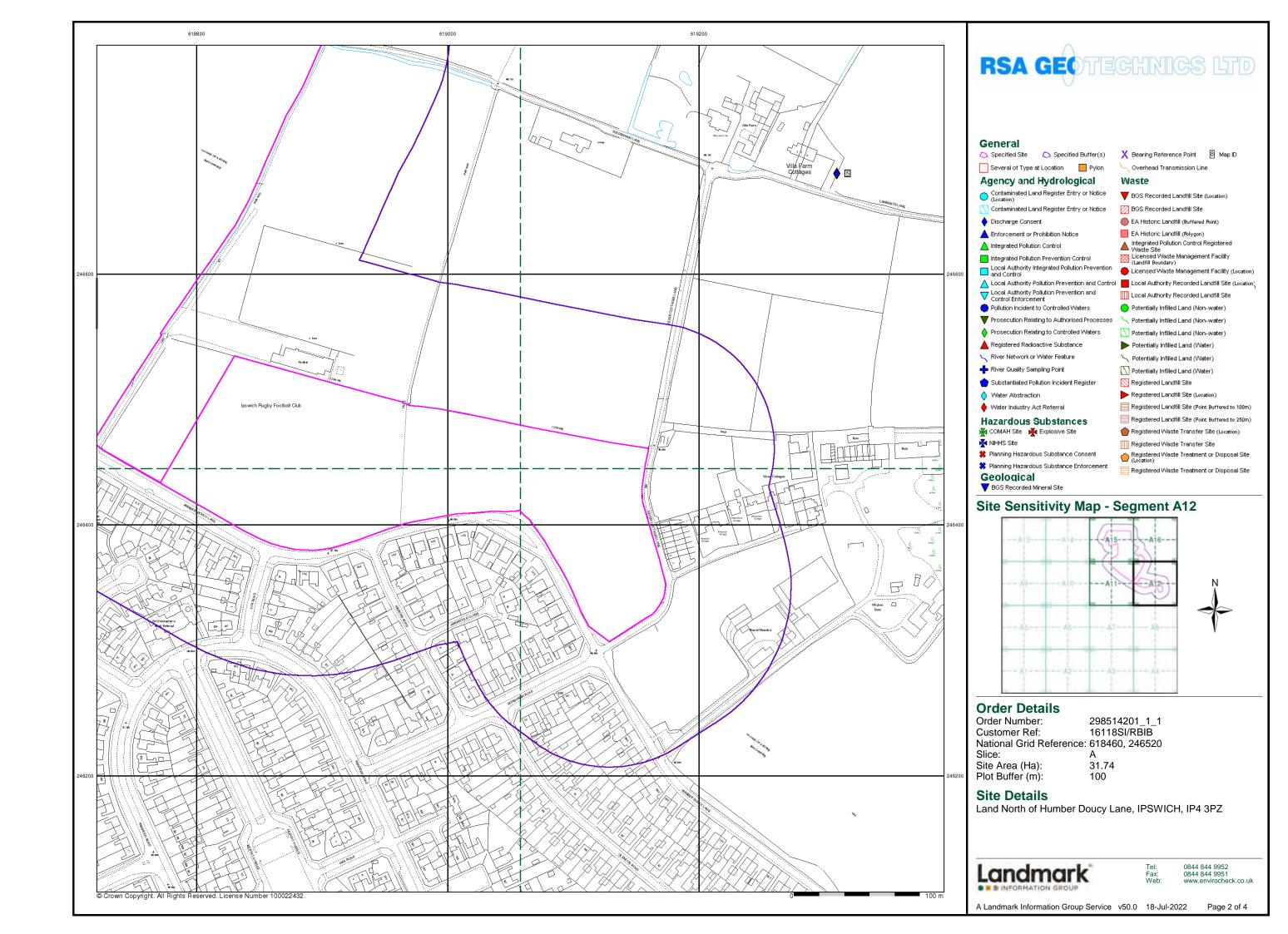
Slice:

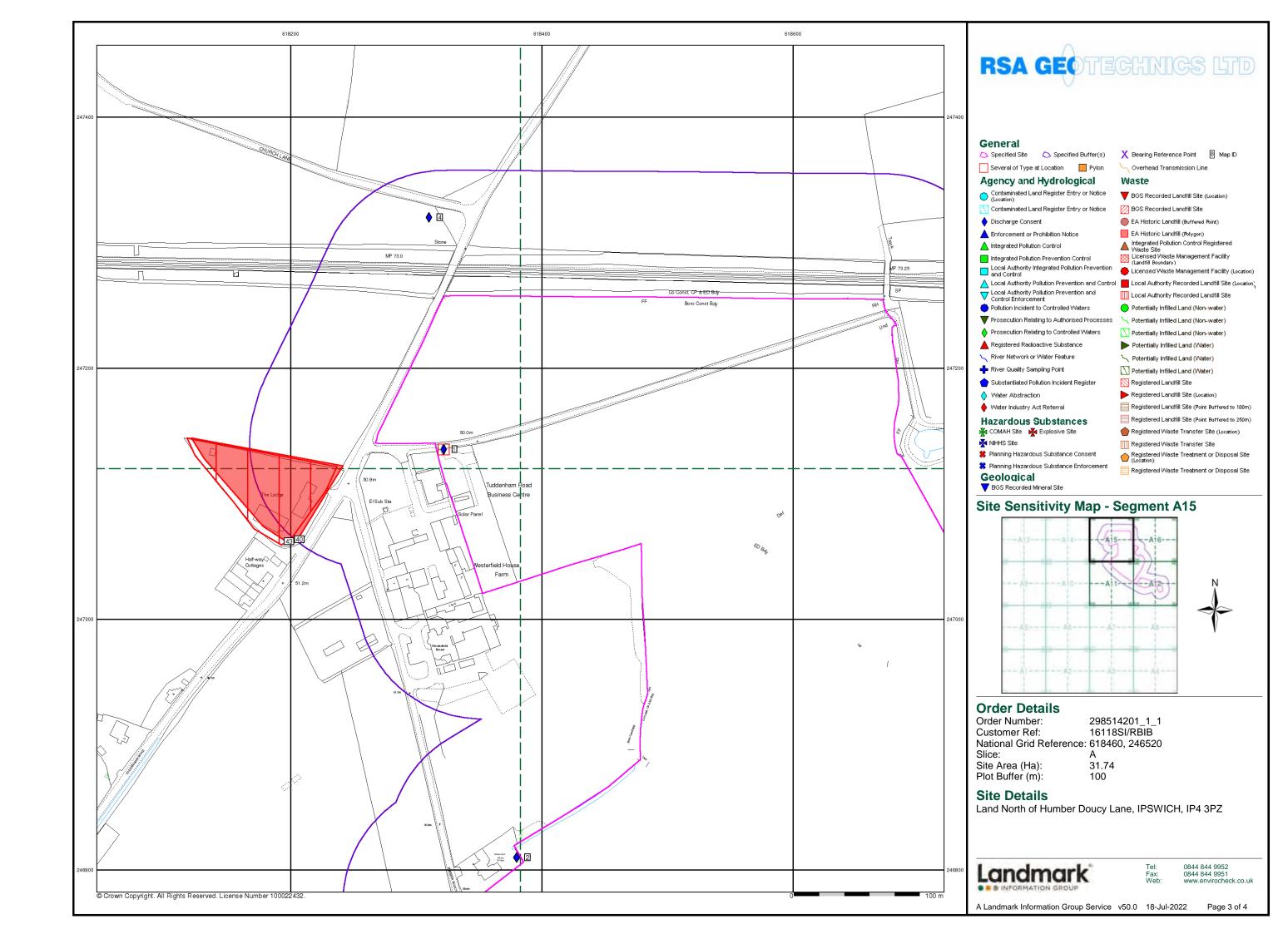
Site Area (Ha): 31.74 Search Buffer (m): 1000


Site Details


Land North of Humber Doucy Lane, IPSWICH, IP4 3PZ




Tel: 0844 844 9952 Fax: 0844 844 9951 Veb: www.envirocheck.co.uk


A Landmark Information Group Service v50.0 18-Jul-2022 Page 4 of 6

